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Abstract. We study subsurface storm flow from a planar hill slope, a problem that is 
similar hydraulically to lateral flow toward drains in landfills. Our analysis is based on the 
linearized one-dimensional Boussinesq equation (Dupuit-Forchheimer approximation), 
which is extended to allow for leakage through the underlying barrier. This linear 
advection-diffusion equation has a greater range of validity than the kinematic wave 
equation. Stating it in terms of the discharge, the variable of primary hydrologic interest, 
we integrate it numerically, using an adaptation of the Muskingum-Cunge routing scheme. 
A single-step computation of the outflow hydrograph, which combines the convenience of 
an analytical solution formula with acceptable accuracy, is proposed as a design tool and 
as a means of parameterization of drainage from hill slopes. Depth profiles are 
determined afterwards by a simple integration of Darcy's law. Examples of the buildup 
and recession phases, with and without leakage, demonstrate the application of the 
computational method. 

1. Introduction 

The hydraulics of drainage from a soil layer resting on an 
inclined bed of lesser conductivity is of interest in watershed 
modeling and in landfill engineering (lateral flow toward 
leachate collection drains installed above liners). The response 
to rainfall of a near-ground soil zone, called interflow, can 
contribute significantly to runoff to streams; in the case of 
heavy infiltration, Beven [1981] has termed this runoff "subsur- 
face storm flow." Henderson and Wooding [1964] and Childs 
[1971] derive the extended Boussincsq equation by formulating 
subsurface storm flow on a wide, planar layer, resting on an 
inclined impervious base within the Dupuit-Forchhcimcr the- 
ory of unconfincd flow. In the Dupuit approximation the pres- 
sure distribution is hydrostatic; hence the potential and the 
velocity are constant over the depth. Here the infiltration rate 
is assumed to be known, and the difficulty of a rigorous solu- 
tion of unsaturated-saturated flow is evaded. This simplifica- 
tion, as well as the geometric schcmatization, are justified as 
means of paramctcrization of the solution for inclusion in 
watershed models [Brutsaert, 1994] and for landfill drainage 
calculations. 

No general analytical solution is known for the nonlinear 
problem. Van de Giesen et al. [1994] solve the corresponding 
two-dimensional (2-D) Laplace equation analytically but for a 
horizontal bed and after linearization of the free-surface con- 

dition. Sanford et al. [1993] fit an empirical formula to exper- 
imental data from the drainage phase. Numerical solutions for 
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the case of a wide, planar hill slope with infiltration have been 
published by Beven [1981] and by Pi and Hjelmfeld [1994]. 
Beven [1981] first computed the depth profiles and then used 
them to determine the outflow rate from a storage balance 
over the plane, a procedure also adopted by Koussis and Lien 
[1982] and by Pi and Hjelmfeld [1994]. In HELP [Schroeder et 
al., 1983, and amendments], the lateral flow to drains is esti- 
mated by a best-fit formula that attempts to summarize nu- 
merical simulation results empirically. 

The outflow is indeed the quantity of practical interest in hill 
slope drainage and in lateral drainage in landfills; however, an 
indirect discharge solution is prescribed by the nonlinear hy- 
draulics. In contrast, direct computation of the discharge is 
possible with the linear advection-diffusion (LAD) equation 
that is derived through linearization of the extended 
Boussinesq equation. Linearization is predicated on the pres- 
sure gradient being small relative to the hill slope; if the pres- 
sure gradient is negligible, the flow is of the kinematic wave 
type [Beven, 1981]. The LAD model is useful for analyzing the 
essential flow features because Boussinesq's equation is mildly 
nonlinear. An indication of the adequacy of linearization is the 
close agreement between steady state depth profiles predicted 
by the nonlinear [Beven, 1981] and the linear theories [Koussis 
and Lien, 1982; Koussis, 1992] (departures from nonlinearity 
are strongest at steady state, when depth variation is largest). 
Brutsaert [1994] gives an infinite trigonometric series solution 
of the linear drainage problem (without infiltration), as does 
Chapman [1995] (linearizing for h 2 and including constant 
infiltration). 

We propose a versatile numerical solution methodology that 
handles arbitrary inputs simply and efficiently. Taking advan- 
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X 

Figure 1. Cross-sectional schematic of a hill slope aquifer, with definitions of symbols. 

tage of the ability to formulate LAD equations for either the 
discharge or the depth, we obtain the discharge directly; the 
depth solution is calculated from it, if needed. This sequence is 
analogous to Muskingum flood routing, which models the lin- 
ear diffusive wave with second-order accuracy, efficiently and 
robustly [Cunge, 1969]. Extending the Muskingum-Cunge 
scheme to account for leakage, we also derive a one-step, 
quasi-analytical solution for the outflow at the foot of the hill 
that can be useful in the design of landfills and in the param- 
eterization of drainage from hill slopes. 

2. Governing Equations 
The governing equations for subsurface storm flow have 

been derived by Henderson and Wooding [1964] and by Childs 
[1971]. We merely state them here, with reference to Figure 1, 
amending the mass balance to include leakage, l, through a 
semipervious base. The discharge per unit width, q, is the 
product of the specific discharge (Darcy's law) and the depth, 
h, perpendicular to the bed: 

q = h(KS - K cos chOh/Ox) (1) 

where K is the hydraulic conductivity and S = sin qb, with qb the 
inclination of the base layer against the horizontal, both as- 
sumed constant; x is measured along the base, with origin at 
the top and with x = L at the foot. The equation of Boussinesq 
[1877] is derived from the substitution of (1) into the one- 
dimensional mass conservation equation: 

n Oh/at + Oq/Ox =f-I 

n oh/at + KS Oh/Ox = cos chK o(h oh/Ox)/Ox + f- I 

n Oh/at + KS Oh/Ox = cos c•Kh 02h/Ox 2 

(2) 

(3a) 

+ cos c•K (Oh/Ox) 2 + f- I (3b) 
ß 

where f is infiltration rate and I is leakage rate, both referenced 
to a unit area parallel to the base; n is specific yield (effective 
or kinematic porosity); and t is time. 

For a small depth variation the slope of the free surface 
relative to the base is small, justifying neglecting the term 
cos chK (Oh/Ox) 2 in (3b) and approximating cos qb O(hOh/Ox)/Ox by 
h o 02h/Ox 2, where ha is a reference depth in which cos qb has 
been absorbed. Division by n leads to a LAD equation with 

velocity u = KS/n and hydraulic diffusion coefficient D = 
Kh o/n , 

Oh/Ot + (KS/n) Oh/Ox = (Kho/n) 02h/Ox 2 + f/n - l/n (4) 

A consistent linearization of (1), which we shall use in order to 
develop the counterpart of (4) in terms of the discharge per 
unit width, is 

q = hKS - hoK Oh/Ox (5) 

We now write (4) in the nondimensional form 

OH/aT + OH/OX = Ha 02HIOX 2 + F- L s (6) 

by introducing the normalized variables [Koussis, 1992] 

X = x/L H = h/(LS) r = tKS/(nL) 

F = f/(KS 2) L s = l/(KS 2) 
(7) 

This nondimensionalization differs from that of Henderson and 

Wooding [1964] (adopted by Beven [1981] and by Koussis and 
Lien [1982]) in that the depth is scaled by the height LS, rather 
than by LS/2. The present normalized infiltration rate is thus 
one quarter of its counterpart of Henderson and Wooding 
[1964]. The nondimensional form of (5) reads, with Q = q/fL, 

QF = H- HoO H/OX (8) 

The LAD equation for the discharge q is obtained by dif- 
ferentiating (5) with respect to t, writing (O/Ot)Oh/Ox = (3/ 
Ox)Oh/Ot, and by substituting for Oh/at from (2), to obtain 

Oq/Ot + (KS/n) Oq/Ox = (Kho/n) 02q/Ox 2 

+ [(KS/n) - (Kho/n)) O/Ox](f- l) (9a) 

When f and I are assumed independent of x and the variables 
are normalized, the result is 

OQ/OT + oQ/oX = Ha O2Q/OX 2 + 1 -f/l (9b) 

Note that although (9b) is strictly valid for constant f and l, it 
may serve as an approximation for conditions with variable 
infiltration. In such cases a function replaces unity on the 
right-hand side, and q is normalized to a reference infiltration 
rate. 
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3. Initial and Boundary Conditions 
For a base that is dry at t - 0 the initial conditions for the 

depth and the discharge are 

h(x, O) = H(X, 0) = 0 (10a) 

q(x, O) = Q(X, 0) = 0 (10b) 

The boundary conditions are quite different for the two for- 
mulations. Moreover, specification of physically meaningful 
conditions at X - 1 remains a problem. At x -- X = 0 the 
flow is zero, 

q(0, t) = Q(0, T) = 0 (11a) 

which translates, via (5), into 

Oh/Ox = h(O, t)/ho, or OH/OX = H(O, r)/Ho. (11b) 

At x - L (X = 1) the depth is not known, unless the outflow 
section is submerged, as for example in a case studied by 
Henderson and Wooding [1964]. S. N. Numerov [Hart, 1962], 
applying conformal mapping to the problem of steady flow 
from a constant-head reservoir into a drain placed at the end 
of a horizontal, impervious base, showed that the free surface 
slope at the drain is -1. Wooding [1966] found excellent agree- 
ment between solutions by conformal mapping and with the 
Dupuit-Forchheimer approach for steady flow over a 30 ø slope 
to a drain (for a specific infiltration rate), except near the 
boundaries. Van de Giesen et al. [1994] showed the seepage 
face to be a second-order effect. Koussis [1992] analyzed linear 
subsurface storm flow on planar hill slopes using a zero-depth 
downgradient boundary condition and derived a steady state 
depth profile with a slope of -F/Ho • - 2 at X = 1. Brutsaert 
[1994], in his analytical determination of the drainage (no 
infiltration) from a planar hill slope, also used zero depth at 
X - 1, stating that this was done for convenience since "in 
hilly terrain, torrential streams tend to be shallow, and they 
usually have no effect on the water table position and the flow 
in adjoining hillslopes" (p. 2759). 

Incomplete knowledge of the depth at X - 1 indeed does 
not cause great concern when the flow is driven mainly by 
gravity, for in that case the "range of influence" of the lower 
boundary condition is limited. This can be verified analytically. 
For example, McEnroe's [1993] nonlinear solution for the max- 
imum steady state depth over a sloping landfill liner, which 
uses Numerov's result to determine the flow depth at X = 1, 
is for all practical purposes numerically the same as the linear 
solution [Koussis, 1992], which uses H(1) = 0 and gives dH/ 
dX • -2 at X = 1. The work reported here uses zero depth 
atX = 1: 

h(L, t) = H(1, T) = 0 (12) 

Specification of a nonzero H(1, T) would require prescrip- 
tion of the evolution of the unknown depth. The free drainage 
case, (12), can be defended as an approximation to an un- 
known yet certainly small depth; but it gives rise to a mathe- 
matical oddity. If the outflow is determined from (5), the 
dominant gravity term is eliminated, leaving q = -hoKOh/Ox. 
This evaluates properly to q = fL when the analytic steady 
state solution for H is used, but (5) is not a reliable basis for the 
determination of the outflow from depth profiles, as it entails 
the numerical evaluation of Oh/Ox. A more robust procedure 
is to obtain the outflow from the storage balance over the slope 
[Beven, 1981; Koussis and Lien, 1982; Pi and Hjelmfeld, 1994]. 

Definition of the outflow boundary condition is not straight- 
forward. Consistency with (12) is obtained by setting Oh/Ot - 
0 in the mass conservation equation, (2), whence 

Oq/Ox = f- l, or oQ/oX = 1 - l/f (13) 

This condition, with l - 0 and for a step input of infinite 
duration, yields the kinematic solution Q(X) = X at steady 
state, which our linear diffusive wave calculations confirm. In 
contrast, prescription of the condition that the discharge ap- 
proaches maximum at X - 1, that is, oQ/oX = 0, implies, by 
(2), that OH/OT = 1 and yields the kinematic wave result 
H(1, T) = T (valid for T -< 1). 

Finally, in order to use the LAD models, the value of h o 
must be known. In the absence of leakage, Koussis [1992] 
estimates its value from the steady state depth profile as 

Ho = ho/LS = [(1 + 2F2) 1/2- 1]/2F (14) 

By interpreting F as the effective, or net, normalized infiltra- 
tion rate, Fne t = F - L•, this estimate can be used also in the 
case of leakage, with further analysis. By applying Darcy's law 
across a barrier of thickness b and hydraulic conductivity k and 
by postulating that the average head differential across the 
barrier is (ho + b), we obtain the steady and uniform leakage 
rate 

l = k(1 + ho/b) (15) 

In landfills k is low by design, so l << f, and therefore it 
suffices to merely estimate l. If h o/b << 1, then l • k and 
Fne t = F - Lf is known. If (ho/b) • 0.1, say, a direct 
estimation is adequate; otherwise an iterative solution is re- 
quired. Consider, for instance, a drain spacing of 100 m, or 
L = 50 m, and a liner thickness b = 2 m and slope S - 0.1; 
forF = 0.2 andH o • F/2 = 0.1 (see below), h o = HoLS • 
0.5 m and h o/b = 0.25, whence a single iteration suffices. A 
cruder estimate for h o is developed from the kinematic wave 
approximation, again by interpreting F as the net infiltration 
rate Fne t = F - L•. The nondimensional steady state profiles 
are straight lines H(X) = FX [Beven, 1981], so H o = F/2. 
This result follows also from (14) directly, upon expanding 
(1 q- 2F2) 1/2 in a truncated binomial series (good up to 

0.s). 

4. The Numerical Solution 

Numerical methods can accommodate arbitrary inputs and 
are thus well suited for evaluating the long-term operation of 
a landfill or for analyzing the response of a hill slope. For the 
purposes of testing the numerical solution that we present shall 
be run with a generic uniform infiltration of constant intensity 
and finite duration. A variety of methods can be brought to 
bear on the numerical solution of (9b), provided they can 
handle the difficulty posed by the dominance of the gravity- 
driven flow over the flow driven by the depth gradient. That 
this situation is typical in hill slope hydrology is underscored by 
the use of the kinematic wave approximation as a computa- 
tional alternative [Beven, 1981]. One such method is based on 
the very efficient Muskingum scheme of flood routing, the 
applicability of which to the subsurface storm flow problem 
follows from the similarity of (9a) to the linear diffusive flood 
wave equation [e.g., Cunge, 1969]. The similarity is highlighted 
by considering an infinitely wide channel, with discharge per 
unit width, q, as in (9a): the wave celerity c corresponds to the 
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linear pore velocity due to gravity KS/n, and the hydraulic 
diffusivity to hoKS/n. 

The Muskingum-Cunge flood routing method is well known 
[Cunge, 1969], requiring only a brief exposition; it has been also 
applied to mass transport problems [Koussis, 1983; Koussis et 
al., 1983; Koussis et al., 1990; Syriopoulou and Koussis, 1991]. 
The Muskingum-Cunge scheme is derived from the kinematic 
wave equation by approximating the spatial derivative by a 
centered-in-time, first-order-in-space-accurate finite differ- 
ence ratio over AX, and the time derivative by a weighted 
average (spatial weighting coefficient 0) finite difference ratio 
over A T. Extended to include flow exchange, the scheme reads 

Qi+l(rn+l) = C1Qi(rn) + C2Qi(rn+l) + C3Qi+l(rn) 

+ (C1 + C2)(1 - I/f)AX (16a) 

where the subscript i indicates the spatial discretization, X i - 
i AX and X i + • - (i + 1 ) AX, and the subscript n the temporal 
discretization, Tn = nAT and T n + • = (n + 1)AT. The 
coefficients C i are functions of 0 and of C - A T/AX, the 
Courant number, and are given by 

C 1 = (C -•- 20)/(2 + C - 20) (16b) 

C 2 = (C - 20)/(2 + C - 20) (16c) 

C3 = (2 - C - 20)/(2 + C - 20) (16d) 

The resulting scheme approximates to order (Ax) 2 a LAD 
equation with diffusion coefficient D n = cAx(0.5 - 0), or, 
for the LAD equation of subsurface storm flow, 

D n = (KS/n)/Xx(0.5 - O) (17) 

The numerical scheme solves the physical LAD equation when 
the numerical and physical diffusion coefficients are matched, 
via the weighting coefficient 0. For (9b), the match yields 

0 = 0.5 - Ho/AX (18a) 

or, in terms of the grid Peclet number P = AX/Ho, 

0 = 0.5 - P-• (18b) 

The numerical scheme is explicit and stable for 0 -< 0.5 
[Cunge, 1969] and thus unconditionally stable for physically 
realizable systems (D > 0). Constraints are placed on the grid 
parameters AX and A T to ensure that the results are physically 
plausible. In the absence of infiltration and leakage, these 
constraints require C i -> 0, in order to eliminate unphysical 
oscillations: (1) in response to a positive input, C2 -> 0, and (2) 
upon cessation of input, C3 -> 0 [Bowen et al., 1989]. These 
grid design constraints (0, C) or (P, C) are summarized as 
follows 

20-< C -< 2 - 20 (19a) 

1-2P -•-<C-<I +2P -1 (19b) 

In the presence of leakage and infiltration, (19a) and (19b) are 
relaxed; we have used them as conservative guides in grid 
design. In addition, to ensure that the premise on which the 
scheme's validity rests is satisfied, that is, gravity-dominated 
flow, P -> 2 should be used, although the scheme is robust 
enough to function with P slightly less than 2. Given the range 
of typical F values, say 0.125 -< F -< 0.5, and using Ho • 
F/2, it follows that the limit P - 2 allows only a coarse spatial 
discretization. The discharge profiles are smooth, however; 

therefore the grid restriction is not severe. In fact, as the 
applications will demonstrate, computation with a single space 
step, AX - 1, yields useable outflow hydrographs, thus lend- 
ing the convenience of an analytical solution. The computation 
proceeds downslope and, since the scheme derives from a 
first-order equation, does not require imposition of a boundary 
condition at X = 1. 

Note further that the kinematic wave solution can be also 

obtained from (16) by setting 0 = 0.5 (D n = 0) and C = 1. 
This choice of parameters gives 

Qi+i(Tn+O = Qi(Tn) + (1 - l/f)/XX (20a) 

In the absence of leakage and after invoking the condition 
Q(X = O, T) = Q(X, r = 0) = 0, (20a)simplifies to the 
form that replicates the kinematic wave solution: 

Qi+•(Tn+i) = Q•(Tn) + AX (20b) 

Despite the formal similarity of (6) and (9), for the problem 
at hand, Muskingum-Cunge routing schemes are for several 
reasons ill-suited for the computation of depth profiles. First, 
and foremost, the depth at X - 0 is unknown and so the 
integration cannot start there. But even if H(0, T) is assumed, 
the explicit, downslope integration predicts free surfaces that 
plateau near X - 1; this is the consequence of ignoring the 
condition H(X - 1, T) - 0, which would tie the profile down 
at the outflow section. If, alternatively, integration started at 
X - 1, where H - 0, it would proceed upslope, contrary to 
the physics of gravity-dominated flow. As a simpler alternative 
to a standard solution for two-point boundary value problems 
[Koussis and Lien, 1982], we decided to solve for the depth 
taking advantage of the known discharge. Either (5) or (2) is 
appropriate; we chose (5) (nondimensional, (8)) because of its 
simplicity. 

After study we discarded explicit algorithms that march the 
integration out from X - 1: (1) first-order-accurate derivative 
approximations in [X• + •, X•] and evaluation of the algebraic 
terms at X• yielded smooth but not very accurate results; (2) 
evaluation of the algebraic terms at X• + • caused oscillations; 
(3) a scheme with a first-order-accurate "starter" for the first 
interval and a second-order-accurate, central finite difference 
approximation thereafter, also suffered from oscillations (large 
errors are incurred near X - 1, where OH/OX is large, and are 
propagated upgradient, corrupting the solution). An implicit 
calculation of depth profiles, based on central finite differences 
and a tridiagonal system of equations, is reliable but tedious. 
We therefore chose to integrate (8) formally with respect to X, 

H(X, T) = (F/Ho) Q(s c, T) exp [(X- •)/Ho] d• (21) 

and to evaluate the integral numerically by the trapezoidal 
rule. This method proved as accurate as the implicit procedure 
but much simpler. In both approaches we used intervals/SX < 
AX, to capture marked variations near X - 1, interpolating 
the necessary discharge values between points AX apart. 

In concluding this part, we wish to point out that (16), used 
with a variable 0, can approximate nonlinearity; 0 is computed 
by (18a) with H o replaced in each AX by an average (Ho) 
calculated as the three-point average at nodes (i, n), (i, n + 
1) and (i + 1, n); each value may be estimated as H • QF 
from appropriate flow rates. Depth profiles can be calculated 
similarly. 
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Figure 2. Evolution of discharge profiles over impervious 
barrier for F = 0.125, computed with AX -- 0.2; P • 2. 
Normalized times are shown on build-up (solid lines) and 
recession (dashed lines) profiles. 
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Figure 4. Evolution of discharge profiles over impervious 
barrier for F = 0.5, computed with AX -- 1/3; P • 1.5. 
Normalized times are shown on build-up (solid lines) and 
recession (dashed lines) profiles. 

5. Applications 
5.1. Numerical Determination of Depth and Discharge 
Distributions 

We compute subsurface storm flow generated by infiltration 
step inputs of normalized intensities F = 0.125 and F = 0.5 
and duration 2, followed by a recession; for F = 0.5 the steady 
state depth at the hilltop is significantly larger than zero 
(H(0) = 0.1, compared to max H • 0.3 [Koussis, 1992]). 
The set of realistic conditions, slope S = 0.2 (½ • 12ø), 
hydraulic conductivity K = 1 m/h, and infiltration rate f = 
0.01 m/h, yields F = 0.25, indicating that the limit of validity 
of the kinematic wave model, F = 0.175 [Beven, 1981], is 
readily exceeded. Departures from nonlinearity are gauged by 
comparing our results with those of Pi and HjelmfeM [1994]. 

Figure 2 shows the evolution of discharge profiles for F - 
0.125, computed in five steps (AX = 0.2; P • 2); Figure 3 
depicts corresponding depth profiles, computed with •X = 
0.05. Figure 4 shows discharges for F = 0.5, computed with 
AX = 1/3 (P • 1.5) and Figure 5 depth profiles, computed 
with •X = 1/21; the sizeable depth at X = 0 is ignored by the 
kinematic wave theory. Outflows, computed in one and in 
multiple steps, are graphed in Figure 6 for F - 0.125 and in 
Figure 7 for F = 0.5; the kinematic wave solution is shown as 
a broken line. Discharge profiles are smooth, in contrast to the 
rapid variation of the depth near X = 1; the accuracy of the 
one-step calculation is noted. As expected, agreement with the 

nonlinear solution is closer for F = 0.125 than for F = 0.5, 
despite use of H(X = 0, T) = 0 by Pi and Hjelmfeld [1994] 
in the first case. Linear and nonlinear depth hydrographs are 
compared for F = 0.125 in Figures 8a and 8b. 

For a test with leakage we use F = 0.5, for emphasis, and 
assume that cracks reduce the hydraulic conductivity contrast 
between drainage layer and landfill liner to K/k = 103. The 
data are as follows: drain spacing is 100 m (L = 50 m), slope 
S = 0.1, and liner thickness b = 2 m. With H o • F/2 = 
0.25, h o = H o ß LS = 1.25 m, and ho/b = 0.625. By (13), 
leakage rate l = 1.625k, or Lf -- 1.625k/KS 2 -- 0.1625, 
and Fne t = F - Lf • 0.34. F = 0.34 and H o • 0.17 
(h o = 0.85 m) give ho/b = 0.425; then l = 1.425k, Lf = 
0.1425, and Fne t • 0.36. Another iteration yields Fne t • 0.35 
and L/F = 0.3. For K/k = 104 a single calculation suffices, 
yielding Lf = 0.01625, Fne t • 0.48, and L/F = 0.03. In 
summary, then, 

L/F = l/f= k(1 + ho/b)/f = k(1 + ho/b)/KS2F 

• k(1 + LSF,et/2b)/KS2F (22a) 

and 

Fne t: F- mf (22b) 

The outflow for F = 0.5, with leakage from a barrier 1000 
times less pervious than the drainage layer, is shown in Figure 
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Figure 6. Comparison of outflow hydrographs for lateral drainage over an impervious barrier for F = 
0.125, computed in multiple and in a single steps, with the nonlinear solution of Pi and Hjelmfeld [1994] and 
the kinematic wave solution (dashed line). 

9 and compared to the no-leakage case; again, single- and 
multiple-step results are presented that demonstrate the utility 
of the one-step solution for design. With F reduced to Fne t -- 
0.35, AX = 1/4 is permissible (P • 1.5). For drainage with 
leakage, portions of the bed may run dry during the recession; 
however, leakage would continue to be computed because of 
the linearization of the gradient-driven flow, resulting in neg- 
ative solution values. To avoid this, discharges are maintained 
at zero once the bed dries. 

We finally examine data from a laboratory drainage exper- 
iment (T > 0, F = 0) ofSanford et al. [1993]. In the particular 
experiment the bed was tilted and water was added, more near 
the top of the hill than its foot, while keeping the outflow 

section closed, until the depth was nearly uniform; the lower 
barrier was then removed suddenly, and the water supply 
stopped. This contrived constant initial depth setup is not re- 
alizable in nature. It can be achieved exactly in the laboratory 
by confining the saturated porous medium in a box, tilting it, 
and then removing the top and lower faces suddenly. For h - 
const, only gravity flow exists, and gradient-driven flow is zero. 
Total flow vanishes when the pressure gradient along the top 
counterbalances the bed slope, (1). The pressure is thus not 
atmospheric and the flow not unconfined, which makes us 
skeptical of the generality of the empirical drainage formulas 
of Sanford et al. [1993]. 

It is impossible to model this case rigorously; nevertheless 
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Figure 7. Comparison of outflow hydrographs for lateral drainage over an impervious barrier for F = 0.5, 
computed in multiple and in a single steps, with the nonlinear linear solution of Pi and Hjelmfeld [1994] and 
the kinematic wave solution (dashed line). 
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Figure 8. Comparison of depth hydrographs for lateral 
drainage over an impervious barrier for F = 0.125, (a) 
build-up and (b) recession phases, with the nonlinear linear 
solution of Pi and Hjelmfeld [1994]. 

cutes acceptable agreement, given the uncertain initial data. 
Early data exceed computed values because h = const causes 
faster early drainage than the model can anticipate, affecting 
flow more on low slopes, S = 0.089 (Figure 10a), than on high 
ones, S = 0.13 9 (Figure 10b). 

5.2. Quasi-analytical Determination of the Outflow Rate 

A one-step solution (AX = 1) of the discharge is as con- 
venient as an analytical formula for the outflow at the foot of 
the hill, Qout(T), and may be sufficiently accurate. It is derived 
from (16a) by recognizing that the flow at the hill top is zero 
andC• + C2 + C3 = 1, whence 

Oout(Tn+l) = C3Oout(Tn) q- (l - C3)(l - l/f) (23a) 

Repeated application of (23a) over time leads to the conver- 
gent (C3 < 1) geometric series 

Qout(Tn+O = (l - C3)(1 - l/f)[1 + C3 + C• +.'' + C•] 

n 

: (]_ -- C3)(]_ -- l/f) • (C3) m (23b) 
m=0 

The sum of the series is (1 - C•)/(1 - C3), and the final, 
compact result is 

Qout(rn+l) = ( ]- - l/f)(1 - C•) (24) 

In the limit T -• m, (24) gives the correct steady state solution, 
Q out(T -• m) = 1 - l/f. If the outflow at the time of cessation 
of infiltration, T* is Q* the drainage rate for times there- , out, 

after, indicated by z - T - T*, can be computed simply as 

we can examine the cumulative outflow evolution, an integral 
quantity less sensitive to initial conditions. The task was exac- 
erbated by the lack of initial infiltration data. To advance the 
solution, we estimated an initial discharge profile by numerical 
differentiation of the first depth profile. The comparison indi- 

Qout('rv) = (C3)VQ*out (25) 

From the perspective of practical work (24) and (25) may be 
the principal results of this work. They provide a simple and 
rational basis for (1) parameterizing the response function of a 
hill slope and (2) computing lateral flow in landfill drainage. 

1.0 I • Multi-step 
•_ F = 0.358 with 
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Normalised Time T = tKs/(nL) 

Figure 9. Comparison of multiple- and single-step solutions for the outflow hydrograph: solid symbols are 
for drainage over an impervious barrier for F = 0.5; open symbols are for drainage over a leaky barrier (S = 
0.1, b = 2 m, L - 50 m, and K/k = 1000) for Fne t = F - Lf - 0.358. 
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Figure 10. Comparison of computed cumulative outflow vol- 
ume hydrographs with laboratory data (symbols) of Sanford et 
al. [1993] for two slopes: (a) S = 0.089 and (b) S = 0.137. 

The parameters that control response time and hydraulic dif- 
fusion are more visible in the dimensional form of (24) and 
(25). In this context we note that (25) also predicts the 
exponential decline of the outflow included in the analytical 
solutions [Brutsaert, 1994; Chapman, 1995], when the exponen- 
tial Muskingum scheme [Koussis, 1980] is used. In that 
scheme's one-step format, C3 = exp I-AT/(1 - 0)] = 
exp [-At/(1 - 0)] and (25) gives the response of a distrib- 
uted reservoir, 

Qout(rv) = Q*out exp [-vAt/(1 - 0)1 

= Q*out exp [-r•/(1 - 0)] (26) 

6. Summary and Conclusions 
We have presented a method for computing subsurface 

storm flow from hill slopes and lateral drainage flow in land- 
fills. The method is based on the linear, extended Boussinesq 
equation for unconfined flow over a sloping, leaky base and 
accounts for the dominant gravity flow and for the gradient- 
driven flow, which the kinematic wave equation neglects. The 
boundary conditions for depth and discharge at the drain have 
been discussed and it has been shown that zero depth at the 
drain yields also a reasonable boundary condition for the dis- 
charge. For the case of a leaky base, or liner, a procedure has 
been developed for estimating net infiltration from gross infil- 
tration and from properties of the base (liner) that control 
leakage. The evolution of discharge is computed first by using 
the Muskingum-Cunge routing scheme; depths are deter- 
mined, if needed, by integrating Darcy's equation for the 
known discharges. This is a parsimonious methodology, which 
is also accurate and robust with proper grid design. The appli- 

cation of the proposed methodology is demonstrated in exam- 
ples of buildup and recession phases, with and without leakage. 
The outflow over the sloping barrier into a drain or stream at 
the foot of the hill slope can also be computed in a single space 
step with adequate accuracy for practical applications. Such a 
procedure is as convenient as an analytical solution and can be 
used as a basis for the parameterizati9 n of the hydrologic 
response function of a hill slope and for the computation of 
certain aspects of landfill drainage hydraulics. 
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