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Rapid distortion theory is applied to stratified homogeneous turbulence that is sheared in a rotating
frame. Insight into the stabilizing and destabilizing effects of the combined stratification and frame
rotation is gained by considering initial fields that are two-dimensional, with the axis of
independence aligned with the flow direction. For these conditions, we derive solutions for the
Fourier components of the flow variables, and for one-point statistics in physical space. The
analytical results are in qualitative agreement with the exact numerical solution for initially isotropic
homogeneous turbulence, and they could be a reference point for the development of turbulence
models. © 2007 American Institute of Physics. �DOI: 10.1063/1.2710291�

Rapid distortion theory �RDT� has been widely used in
studying the effects of rotation or stratification in sheared
turbulence.1–5 In this study, we use RDT to examine the com-
bined effects of rotation and stratification in the case of
stratified turbulence that is sheared in a rotating frame �Fig.
1�. The analysis carried out herein leads to analytical expres-
sions for the asymptotic sates of the Reynolds stress and
structure tensors, and these can then be used in the develop-
ment of closures such as the algebraic structure-based
model.6 The studied case is of relevance to turbomachinery
flows �for example, with internal blade cooling passages� and
to geophysical flows �for example, the flow over a hill or
bump�. Most recently, a connected work has been studied by
Salhi and Cambon,7 where the rotation was aligned with the
vertical direction. Under inviscid RDT and using the Bouss-
inesq approximation, the transport equations for the fluctuat-
ing velocity and density components ui and � become
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where S=dU1 /dx2 is the mean velocity gradient, � f is the
frame rotation rate, g is the gravitational constant, �0 is the
reference density, and H=d� /dx2 is the mean density gradi-
ent. We consider an initially three-component �3C� but two-
dimensional �2D� turbulence, independent of the flow direc-
tion x1, with ui=ui�x2 ,x3� for i=1,2 ,3. Because the chosen
axis of independence is aligned with flow direction, it does
not become tilted at later times. As a result, the momentum
and density equations �1� simplify to

�ui/�t = − �i1Su2 − ��p/�xi + �g�i2�/�0 + 2�ij3� fuj ,

��/�t = − u2H . �2�

The vanishing of the convective terms means that Fourier
expansion methods can be used without the need to trans-

form coordinates into a frame deforming with the mean flow,
and thus we obtain the following set of evolution equations
for the Fourier coefficients:
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where �=St is the total shear, �=2� f /S is the dimensionless
rotation rate, and ni=ki /k are the relative values of the com-
ponents of the wave-number vector, whose magnitude is
k=�kiki. Differentiating �3� with respect to �, we obtain

�2û2/��2 = Zn3
2û2, �2û3/��2 = Zn3

2û3. �4�

In the above, Z=B−Rig, where B=��1−�� is the
Bradshaw8–Pedley9 stability parameter, and Rig=−Hg /S2�0

is the Richardson number. Clearly the solution of �3� and �4�
depends on the value of Z. As will be shown, positive values
of this parameter correspond to unstable cases, resulting in
an exponential turbulent kinetic energy �TKE� growth, while
negative values cause a stabilizing behavior. Regarding the
stabilizing criterion, a similar result can also be correctly
obtained using a simplified 1D pressureless analysis
�Brethouwer10�. The general solution for the Fourier trans-
formed density and velocity components �3� and �4� yields
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In the above relations, the superscript 0 is used in order to
denote initial values. Calculating the velocity spectra
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Eij � ûiûj
*, we integrate over all the wave numbers to obtain

analytical expressions in physical space for the development
of the stress components Rij =uiuj =			Eijd

3k and the
structure dimensionality tensor components1,2

Dij =			Enn�k�kikj /k2d3k. The combined use of these two
tensors gives a description of the morphology of turbulent
fields.1 In the following, we present solutions in physical
space for two different initializations, vortical 2D-2C and
jetal 2D-1C �for an explanation of vortical and jetal initial
conditions, see Ref. 1�. Because of the linearity of the gov-
erning equations, the solutions corresponding to initially jetal
2D-1C and to initially vortical 2D-2C cases can be superim-
posed. This way, evolution histories for Rij ,Dij and fluxes
can be generated for various 2D-3C initial fields consisting
of uncorrelated jets and vortices. In the case of an initially
2D-2C vortical velocity spectrum �see also Cambon et al.11�,

Eij
vor�k,0� =

E�k�
2�k

��k1�
�ij −
kikj

k2 − �i1� j1�,

i = 1,2,3 j = 1,2,3, �6�

the Reynolds stress components become
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where In are Bessel functions of the first kind and q0
2 is twice

the initial TKE. From �7� it can be shown that the turbulent
kinetic energy evolves with time as

qvor
2 /q0

2 = �Z − �1 − ��2 + �1 − Rig − ��I0�2�Z���/2Z . �8�

When Z�0, Eq. �9� approaches an exponential growth for
large total shear,
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On the other hand, when Z
0, �Z is imaginary and the term
on the right-hand side of �8� becomes I0�2�Z��
=J0�2�−Z��, where Jn are Bessel functions of the second

kind. Thus, the turbulent kinetic energy stabilizes, showing
decreasing oscillations around the value

lim
�→	
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2 = 1/2 − �1 − ��2/2Z . �10�

At the neutral limit Z=0, the TKE evolution becomes a qua-
dratic function of time
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The dimensionality tensor components for this vortical ini-
tialization are

D11
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From Eqs. �7�–�12�, we may calculate the normalized values
of the Reynolds stress, rij=Rij /Rkk, and the structure dimen-
sionality tensor, dij=Dij /Rkk, in order to describe the states of
the turbulence.1 When Z�0, the asymptotic limits of these
forms for large total shear become
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,
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d33 = 1, �13�

corresponding to a 1D-2C state where all the dependence is
confined along the axis of the frame rotation �x3�, and the
distribution of the energy in the plane normal to that axis
depends on the actual values of � and Rig. Such a state
corresponds to sheets extending perpendicular to the axis of
the frame rotation and to a turbulent motion aligned with the
other two directions.

For the stable cases in which Z
0,

lim
�→	
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�→	

d33 = 1/2,

where the mean shear drives 2D-2C initially vortical turbu-
lence to a 2D-3C state with axisymmetric structures and an
equipartition of energy within the plane normal to the axis of
the mean flow. The final partition of the TKE along the axis
of independence �i.e., r11� and normal to the axis �i.e.,
r22,r33� depends on the values of � and Z. Finally, for the
neutral cases corresponding to Z=0 �apart from the limiting
case with �=1 and Rig=0, where the turbulence remains
constant equal to its initial state�, the asymptotic limits for rij

and dij are

lim
�→	

r11 = 1, lim
�→	

r12 = 0, lim
�→	

d22 = 1/4, lim
�→	

d33 = 3/4.

�15�
This means that the initially 2D vortical turbulence is driven
to jetal turbulence with eddies flattened along the x3 axis.

FIG. 1. Illustration of the general case for stratified homogeneous turbu-
lence that is sheared in a rotating frame.
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When the turbulence is initialized using a 1C-2D jetal
velocity spectrum tensor

Eij
jet�k,0� = E�k���k1��i1� j1/2�k, i = 1,2,3 j = 1,2,3, �16�

the Reynolds stresses are calculated as
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The trace in this jetal case evolves as
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and, similarly to the vortical case, when Z�0 it grows ex-
ponentially at large total shear,
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When Z
0, the TKE stabilizes, showing decreasing oscilla-
tions around the value
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while at the neutral limit Z=0, the TKE evolves as a quartic
polynomial,
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Z→0
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2 = 1 + ��2 + Rig��2/2 + 3Rig
2�4/32 �21�

depending mainly on the value of Rig. It has to be pointed
out, however, that in the case of the jetal initialization with
no frame rotation ��=0�, the turbulence remains unmodified,
as can be shown from Eqs. �18�–�21�. This differs from the
corresponding behavior in the vortical initialization. The di-
mensionality tensor is
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For Z�0, the normalized values of the stresses rij and
the structure dimensionality tensor components dij reach ex-
actly the same asymptotic values as given by �13�, and thus
correspond to the same 1D-2C state that has been found for
the vortical case. For the stable cases, characterized by Z

0, shear drives turbulence to a 2D-3C state
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,
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�→	

d22 = lim
�→	

d33 = 1/2,

showing an equipartition of energy within the plane normal
to the axis of the mean flow, similarly to the vortical initial-
ization. However, the final partition of the TKE along the
axis of independence �i.e., r11� and normal to the axis �i.e.,
r22,r33� is different compared to �14�. For Z=0, the initially
2D-1C jetal turbulence remains jetal with eddies flattened
along the x3 axis,

FIG. 2. Evolution of the TKE for the cases with �=0.2 and Rig equal to
0.08 �unstable: thin continuous, solid circles�, 0.16 �neutral: long dashed,
open circles�, 0.24 �stable: short dashed, open triangles�, as well as the case
with �=−0.1 and Rig=−0.11 �neutral: bold continuous, solid triangles� cal-
culated from the 3D initially isotropic exact PRM numerical solution �sym-
bols� and the 2D analytical solution with k1=0 �lines�.

FIG. 3. Evolution of the normalized stress components 11 �continuous, solid
circles�, 22 �short dashed, open circles�, 33 �long dashed, solid triangles�,
and 12 �dotted dashed, open triangles� calculated from the 3D initially iso-
tropic exact PRM numerical solution �symbols� and the 2D analytical solu-
tion with k1=0 �lines� presented here, for the unstable case with
�=0.2,Rig=0.08 and Z=0.08.
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lim
�→	

r11 = 1, lim
�→	

r12 = 0, lim
�→	

d22 = 1/6, lim
�→	

d33 = 5/6.

�24�

In Fig. 2, we present a comparison between the TKE evolu-
tion calculated by the analytical expressions derived here, for
an equally weighted �50%-50%� superposition between the
vortical and the jetal initializations, and the numerical solu-
tion of the 3D-3C initially isotropic initialization calculated
using the particle representation model �PRM� developed by
Kassinos and Reynolds,12 with large enough numbers of par-
ticles to ensure the accuracy of the solution. From the com-
parison, it turns out that the 2D approach, although overes-
timating the TKE, explains accurately the type �algebraic or
exponential� of the TKE growth, while identifying Z as the
principal parameter for the determination of the stability of
the turbulent flow. Starting with the unstable case with �
=0.2 and Rig=0.08, we notice the profound exponential evo-
lution with time. An increase of Rig to 0.16, resulting in Z
=0, causes a departure from the exponential toward a poly-
nomial growth, while a further increase of Rig to 0.24 stabi-
lizes the TKE. Also, a combination of �=−0.1 �which tends
to stabilize� and Rig=−0.11 �which tends to destabilize the
TKE� resulting in Z=0 again produces a neutral, polynomial
growth of the TKE with time. In Figs. 3–6, the evolutions of
the normalized stress components rij are illustrated for all the
above-mentioned cases, and compared with the respective
3D-PRM exact numerical solutions. As can be seen for the
neutral and the unstable cases, the limiting states reached by
the analytical 2D solution are in good agreement with the

corresponding limiting states obtained numerically �PRM�
for initially 3D isotropic turbulence. The same agreement
can be drawn for dij �not shown here�, where, for the un-
stable and the neutral regimes, the d11 component �initially
isotropic case� tends quickly to zero, especially in the un-
stable cases. In contrast, when Z
0, the initially 3D charac-
ter of the turbulence becomes more important. As a result,
the limiting states reached by the analytical 2D solution start
to diverge from the numerical 3D results �Fig. 5�. In spite of
the moderate disagreement in the tensor components, both
initializations result in the stabilization of the TKE, as appro-
priate.
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