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Summary We study the interaction of a stream with a sloping unconfined aquifer that the
stream is assumed to fully penetrate. The analysis applies to flow in a vertical section,
considers the existence of a low-conductivity streambed layer and the flow in the aquifer
to be induced by variations of the stream stage. Invoking the Dupuit assumption yields the
1-D Boussinesq equation, extended for a sloping base. The Boussinesq equation is linear-
ised, the derived flow model is critiqued and an objective procedure for determining the
linearisation level is developed. We solve the linear governing equation by the method of
Laplace transform, with analytical inversion; the horizontal-aquifer case is treated in the
zero-slope limit. The system response function is derived for the general case (sloping
aquifer, sediment bed layer) and for several specific cases, and solutions are verified
against known analytical results. Responses are contrasted for aquifers on positive, neg-
ative and zero slopes to step changes in the stage of streams with and without a sediment
bed layer. The solutions give the aquifer stage and flow rate, the flow exchange rate at the
stream–aquifer interface and the exchanged water volumes (bank storage/release).
ª 2007 Elsevier B.V. All rights reserved.
Introduction

The interaction of a stream with an adjacent aquifer inter-
ests hydro-scientists/engineers because it occurs in a vari-
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ety of cases, such as the conjunctive management of
surface and ground water resources, stream base flow and
the modification of a flood wave through the exchange of
water across the stream banks (Sophocleous, 2002). The
disparate characteristic response times of aquifer and
stream flow make the computation of the modification of
streamflow through its interaction with an adjacent aquifer
a significant numerical challenge (Perkins and Koussis,
1996). In this work we derive the aquifer response by analyt-
.
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Notation

Definition of symbols with dimension (L, length; T,
time)

a solution parameter entailing the ratio of veloc-
ity to diffusion coefficient [L�1]

b solution parameter [L�1]
bs thickness of low conductivity sediment layer in

streambed [L]
c1, c2 coefficients in the solution that are determined

through the boundary conditions [LT]
D diffusion coefficient [L2 T�1]
Do diffusion coefficient, dimensionless [–]
f(� � �) function of argument in ( )
F Laplace-transformed normalised depth of aqui-

fer [–]
h height of water column measured normal to the

bed, depth of aquifer [L]
ho depth of linearisation of the aquifer [L]
H normalised depth of aquifer [–]
Ho normalised linearisation depth of the aquifer

[–]
i imaginary unit (�1)1/2
K hydraulic conductivity of aquifer [L T�1]
Ks hydraulic conductivity of sediment streambed

layer [L T�1]
l streambed leakance [L]
L length of aquifer [L]
n drainable porosity (specific yield) of aquifer [–]
q aquifer discharge per unit width [L2 T�1]
Q aquifer discharge per unit width normalised by

KLS2 (sloping) or KL (horizontal) [–]
Rm mth residual used in the development of the

solution [L]

s Laplace transform variable [T�1]
sm poles in the power series development of ana-

lytic functions (theorem of residua) [T�1]
S slope of aquifer basis, defined as sinu [–]
t time [T]
T normalised time [–]
u system response function, dimensional [T�1]
U system response function, dimensionless [–]
vol volume of water exchanged with aquifer, per

unit stream length [L2]
V kinematic wave linear pore velocity of aquifer,

KS/n [L T�1]
VOL normalised volume of water, per unit stream

length, exchanged with aquifer [–]
x distance measured along the aquifer base [L]
X normalised distance measured along the aqui-

fer base [–]
y depth at stream–aquifer interface [L]
Y dimensionless depth at stream–aquifer inter-

face [–]
zm mth root of the equation tan z = f(z, a, l, L) [–]
gm function of parameters in expression for the mth

residuum, gm (a, l, L, zm, y) [–]
f elevation above a datum [L]
nm(x) spatial function in expression for the mth resid-

uum [–]
s dummy variable of integration over time [T]
u inclination angle of aquifer base against the

horizontal [–]
U hydraulic potential [L]
w dummy variable of integration [–]
W argument of error function [–]
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ical means, prescribing the variation of the stream stage as
an aquifer boundary condition.

Barlow and Moench (1998) review an array of Laplace-
transform-based solutions for the interaction between con-
fined, leaky and unconfined aquifers with an adjacent
stream, which the paper of Moench and Barlow (2000)
summarises; they also document two computer codes for
solving the interaction problem through numerical convolu-
tion. In the relevant literature the aquifer base is taken as
horizontal, and, as a consequence, upon linearisation, the
equation governing planar flow in an unconfined aquifers
under the Dupuit approximation (Boussinesq equation) is
of the pure diffusion type. In their pioneering work, Coo-
per and Rorabough (1963) solve that equation, deriving
analytical expressions for the flow that develops in a hor-
izontal aquifer due to a wave-like variation of the stream
stage. We extend that work here to include the more real-
istic case of a stream interacting with an unconfined aqui-
fer on a sloping base. Thus, after linearisation of the
extended Boussinesq equation, we obtain a linear advec-
tion–diffusion-type equation that we solve by the Laplace
transform method.

The structure of this first in a series of two papers is as
follows. The mathematical formulation of the physics is pre-
sented first, with discussion, and also in non-dimensional
form. The analytical solution methodology is detailed then,
treating the case of a step change of the stream stage, from
which the system response function (SRF) is derived; the
solution for a horizontal aquifer is obtained in the zero-
slope limit. The solutions give the aquifer stage and flow
rate, the flow exchange rate at the stream-bank and the
volumes exchanged (bank storage). The aquifer responses
for horizontal and for positive or negative sloping bases
are contrasted for step changes and for a streambed with
and without a sediment layer. The added complexity of re-
charge is ignored mainly due to its minor influence relative
to the stream.
The mathematical representation of the
physics

The hydraulic description of flow in an unconfined aquifer
(theory of Dupuit) of uniform hydraulic conductivity K and
drainable porosity n (specific yield) approximates the pres-
sure in the water column of height h normal to the bed as
hydrostatic. The flow potential U is then the sum of the
elevation at a point in the fluid, f, and the hydrostatic head
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there, hcosu. The gradient of elevation in the flow direction
x, measured from the stream–aquifer interface along the
base that is inclined at the angle u against the horizontal,
is df/dx = S = sinu. By Darcy’s law, the discharge per unit
width through the aquifer shown in Fig. 1 (planar flow) is

qðx; tÞ ¼ �h K
oU
ox

� �
¼ �Kh Sþ oh

ox
cosu

� �
: ð1Þ

Combining Eq. (1) with the storage balance (mass conser-
vation stated as volume balance)

n
oh

ot
þ oq

ox
¼ 0 ð2Þ

yields the equation of Boussinesq (1877) for unconfined flow
in a porous layer on an inclined base (Henderson and Woo-
ding, 1964; for a thorough analysis, see Wooding and Chap-
man, 1966 and Childs, 1971):

n
oh

ot
� KS

oh

ox
� cosuK

o

ox
h

oh

ox

� �
¼ 0: ð3Þ

General analytical solutions are not known for the non-
linear Eq. (3), only solutions for special flows in horizontal
aquifers. The kinematic wave approximation [indicated al-
ready by Boussinesq (1877)] offers a ready simplification
for S� joh/oxj, whence q � hKS, is obtained by neglecting
the term cosuKo(hoh/ox)/ox in Eq. (3), but fails as u! 0.
Judicious linearisation around some depth ho renders the
governing equations analytically tractable:

q ¼ �hKS� hoK cosu
oh

ox
ð4Þ

n
oh

ot
� KS

oh

ox
¼ Kho cosu

o2h

ox2
: ð5Þ

The advection–diffusion equation (5) (velocity �KS/n,
diffusion coefficient K hocosu/n) is the linear advection–
dispersion model of Koussis and Lien (1982) for flow in a
Figure 1 Cross-sectional schematic of stream and ad
sloping porous layer that has been used in numerous studies
(e.g., Koussis, 1992; Brutsaert, 1994; Koussis et al., 1998;
Verhoest and Troch, 2000; Pauwels et al., 2002; Akylas
et al., 2006).

Introducing the normalised variables for the sloping
aquifer

X ¼ x=L; H ¼ h=ðLSÞ; T ¼ tKS=ðnLÞ; Q ¼ q=ðKLS2Þ;
ð6aÞ

the non-dimensional equation governing the depth becomes

oH

oT
� oH

oX
¼ Ho cosu

o2H

oX2
ð7aÞ

and the corresponding non-dimensional form of the dis-
charge Eq. (4) reads

Q ¼ �H � Ho cosuoH=oX: ð8aÞ

The slope term vanishes in the case of a horizontal aquifer
and q = �Khooh/ox. The governing equation (7a) reverts
then to a diffusion-type, in terms of re-defined normalised
variables:

X ¼ x=L; H ¼ h=L; T ¼ tK=ðnLÞ; Q ¼ q=ðKLÞ: ð6bÞ

oH

oT
¼ Ho

o2H

oX2
; ð7bÞ

Q ¼ �Ho oH=oX: ð8bÞ

By replacing ho by B = const. and n by the specific storage Ss,
Eqs. (7b) and (8b) describe flow in a constant-thickness con-
fined aquifer. Henceforth we adopt the compact notation
Do = Hocosu.

The flow vanishes at the inland boundary, x = L, X = 1,
i.e., q(1, t) = Q(1, T) = 0; the water is thus assumed to al-
jacent sloping aquifer, with definition of symbols.
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Figure 2 Comparison of steady flow profiles of depth and
hydraulic potential between linear and nonlinear solutions.

88 E. Akylas, A.D. Koussis
ways be at that boundary (no moving boundary on a slope is
considered). This condition translates for the sloping and for
the horizontal aquifer, respectively, to

oh=ox ¼ �ShðL; tÞ=ho cos/; or

oH=oX ¼ �Hð1;TÞ=Ho cos/ ¼ �Hð1;TÞ=Do ð9aÞ
oh=ox ¼ 0; or oH=oX ¼ 0: ð9bÞ

The stream–aquifer boundary is simplified as vertical
and the stream is assumed to penetrate the aquifer fully;
due to the Dupuit–Forchheimer approximation, a seepage
face is ignored and the water level is continuous across
the stream–aquifer interface. A streambed layer of low
conductivity is taken into account. We consider a step
change in stream stage from 0 to y (0 to Y non-dimension-
ally), relative to the initial stream level. The actual initial
and final values affect only the appropriate linearisation
level.

The condition at the stream–aquifer interface depends
on the presence or not of a sediment streambed layer. In
the absence of such a layer, the depth at the interface
boundary, above an initial stream depth his, writes

step rise : hð0; t ¼ 0�Þ ¼ 0; hð0; t > 0þÞ ¼ y; or

Hð0;T ¼ 0�Þ ¼ 0;Hð0;T > 0þÞ ¼ Y ð10aÞ
step drop : hð0; t ¼ 0�Þ ¼ y; hð0; t > 0þÞ ¼ 0; or

Hð0;T ¼ 0Þ ¼ Y;Hð0;T > 0þÞ ¼ 0 ð10bÞ

If a bed layer of lower conductivity Ks is present, a linear
depth profile is prescribed across its thickness bs. Flow con-
tinuity at the streambed–aquifer interface requires then
(ignoring the ill-defined bed slope across the schematised
interface)

Ks
hstream � hbs

bs
¼ �K oh

ox

����
bs

: ð11Þ

The initial condition for the depth follows from Eq. (4)
for q(x, 0) = Q(X, 0) = 0, which gives

dh=dx ¼ �Sh=ðho cosuÞ; ð12Þ

or equivalently from the steady-state solution of Eq. (7) and
for a known initial depth his at the stream aquifer interface,
for an appropriate boundary:

hðx; 0Þ ¼ hsðxÞ ¼ his expð�Sx=ho cosuÞ; or

HðX; 0Þ ¼ HsðxÞ ¼ His expð�X=DoÞ; and ð13aÞ
hðx; 0Þ ¼ hsðxÞ ¼ his; or

HðX; 0Þ ¼ HsðxÞ ¼ His for a horizontal aquifer: ð13bÞ

We analyse the linearisation shortcomings because we
found no relevant discussion in the literature. The exponen-
tial profile Eq. (13a), which holds for a stagnant aquifer, is
counter-intuitive and an artefact of linearising Eqs. (1)–
(4); e.g., a flawed consequence of Eq. (4) is that, if dh/
dx 5 0, the flow does not vanish when h = 0. In addition,
Eq. (13a) yields hs(L) > 0 for any his and L, i.e., the profile
climbs the slope indefinitely, and dh/dx 5 �tanu, at L.
These results conflict with the nonlinear flow Eq. (1), which
gives for q = 0 (besides the trivial h = 0) the horizontal pro-
file dh/dx = �tanu, with reach limited to his/sinu and
hydraulic potential U = his = const. (datum at the river
bed), since
his ¼ fþ h cosu ¼ x sinuþ h cosu: ð14Þ

In contrast, profile Eq. (13a), with dh/dx = �tanuh/ho,
gives the variable hydraulic potential

U ¼ x sinuþ his cosu exp � x sinu
ho cosu

� �
6¼ his: ð15Þ

We optimise the linearisation level ho of the steady flow
profile by setting the mean defect of (his � U) (its integral
over L) zero, which yields the implicit equation for Do (or
for ho)

Do ¼ 1� 1

2His

� �
ð1� e�1=DoÞ�1ðcosuÞ�1: ð16Þ

This equation is solved by iteration, starting from the hori-
zontal profile estimate Do = (His � 0.5)cosu. The steady-
state depth and hydraulic potential profiles shown in
Fig. 2 for his = 10 m, L = 100 m, u = 3� and hocosu � 8.2 m
exemplify the linear solution’s approximation of the hori-
zontal surface. That U (x P 64 m) > his is a consequence of
optimising hocosu to give U = his on the profile-average.
These flaws are minimised in field applications by model cal-
ibration, as demonstrated in the sequel paper Koussis et al.
(in review). The linear model is free of the noted flaws, if
the aquifer is horizontal.

Because Eq. (16) holds for steady flow, we re-visit the is-
sue of optimal linearisation in ‘‘Sensitivity study’’ for tran-
sient flow. Yet, it seems advisable to assess the
appropriateness of the linear model on steep slopes, as a
large range of variation reduces the accuracy of any linear-
isation; however, on large slopes, the linear gravity term
will be dominant, making the linearised diffusion term a
secondary correction.

Development of analytical solution

General methodology

The solution that we develop is for a step change y of the
stream stage relative to an initial stream depth his and the
corresponding steady-state profile in the aquifer. That this
is equivalent to solving for a step change y and zero-depth
initial condition can be seen by considering the solution to
consist of a steady state and a transient part. Then, the
steady-state solution due to the initial stream depth his sat-
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isfies the steady state form of Eq. (5), leaving the transient
solution, due to y, to be satisfied by Eq. (5), subject to a
zero initial condition.

Laplace-transformation (variable s) of Eq. (5) yields the
differential equation in space for the transformed depth
variable F, which incorporates a zero-depth initial
condition,

Kho cosu
n

d2F

dx2
þ KS

n

dF

dx
� sF ¼ 0; ð17aÞ

or restated, using the linear pore velocity V = KS/n and the
diffusivity D = Khocosu/n,

D
d2F

dx2
þ V

dF

dx
� sF ¼ 0: ð17bÞ

The condition applied at the stream–aquifer interface
depends on the physical situation. When a bed layer of low-
er conductivity sediments is present, Eq. (11) applies; upon
transformation and after placing the origin of x-axis at the
beginning of the aquifer (i.e., the boundary condition ap-
plies at the aquifer-side edge of the streambed layer), Eq.
(11) yields

Fðx ¼ 0Þ ¼ y=sþ ðK=KsÞbsdF=dxjx¼0 ¼ y=sþ ldF=dxjx¼0;
ð18aÞ

the scaled bed layer thickness (K/Ks)bs = l is called the
streambed leakance, which is a key parameter of the
stream–aquifer interaction (Sophocleous et al., 1995).
Substituting for that layer an equivalent aquifer length l
that offers the same flow resistance as the streambed layer
is approximately correct for steady flow, but not for tran-
sient flow, because the storages of l and bs differ and mass
conservation is violated. In the absence of a streambed
layer bs = 0 and

Fðx ¼ 0Þ ¼ y=s: ð18bÞ

The no-flow condition at the landside boundary of the aqui-
fer x = L,

dF=dxjx¼L ¼ �VFðx ¼ LÞ=D; ð19aÞ

simplifies in the case of a horizontal aquifer (S = 0 and thus
V = 0) to

dF=dxjx¼L ¼ 0: ð19bÞ
With the abbreviations a = �V/2D, b = (a2 + s/D)1/2, the
general solution of Eq. (17) writes

F ¼ c1 exp½ðaþ bÞx� þ c2 exp½ða� bÞx�: ð20Þ

The constants c1, c2 are determined from the boundary con-
ditions; Eq. (18a) is satisfied for

c2 ¼ �
y=sþ c1½lðaþ bÞ � 1�

lða� bÞ � 1
: ð21aÞ

In the absence of a streambed sediment layer, l = 0, Eq.
(18b) applies and Eq. (21a) simplifies to

c2 ¼ y=s� c1: ð21bÞ
Then, introducing Eq. (21a) into Eq. (20), we obtain

FðxÞ

¼ c1
½lða�bÞ�1�exp½ðaþbÞx�� ½lðaþbÞ�1�exp½ða�bÞx�

½lða�bÞ�1�

� �

�yexp½ða�bÞx�
s½lða�bÞ�1� : ð22Þ
Finally, the solution Eq. (22) satisfies the no-flow boundary
condition at x = L when

c1 ¼
yðaþ bÞ expð�bLÞ

2s½ðla2 þ lb2 � aÞ sinhðbLÞ þ ðb� 2labÞ coshðbLÞ�
;

ð23aÞ

or, again, in the absence of a streambed sediment layer,
when

c1 ¼
yðaþ bÞe�bL

2s½b coshðbLÞ � a sinhðbLÞ� : ð23bÞ

The general solution evaluates thus to

FðxÞ ¼ yeax½a sinhðbx � bLÞ þ b coshðbx � bLÞ�
s½ðla2 þ lb2 � aÞ sinhðbLÞ þ ðb� 2labÞ coshðbLÞ�

;

ð24aÞ

specialising in the absence of a streambed sediment layer
(l = 0) to

FðxÞ ¼ yeax½b coshðbL� bxÞ � a sinhðbL� bxÞ�
s½b coshðbLÞ � a sinhðbLÞ� : ð24bÞ

Inverting from the s-domain to the time domain involves
a complex formula entailing the evaluation of an integral,
for which the theorem of residua (development of analytic
functions in power series) is applied (Heinhold, 1948; Bron-
stein and Semendjajew, 1964). Following Brutsaert (1994),
the inverse transform is given by the sum of the residua Rm

of F(s)est at its m singular points, or poles, so,

hðx; tÞ ¼
X

m

Rm: ð25Þ

The Rm are defined as coefficients of (s � so)
�1 in the expan-

sion of F(s)est in the neighbourhood of the m poles so. For
poles of the order 1, a residuum is calculated by

Rm ¼ lim
s!so
½ðs� soÞFðsÞest�; ð26aÞ

or, if we set F(s) = P(s)/T(s), by the equivalent form

Rm ¼ lim
s!so

PðsÞest

½TðsÞ � TðsoÞ�=ðs� soÞ
¼ PðsoÞesot

T 0ðsoÞ
; ð26bÞ

where T 0 = dT/ds. Eq. (26) has first-order poles at s = 0 and
at the roots sm = so of

T 0ðsmÞ ¼ ½la2 þ lb2ðsmÞ � a� sinh½bðsmÞL� þ ½b� 2labðsmÞ�
� cosh½bðsmÞL�: ð27Þ

Letting b(sm)L = izm [i = (�1)1/2 is the imaginary unit],
T 0(s) = 0 gives

tan zm ¼
zmðL� 2laLÞ

lz2m � la2L2 þ aL2
; ð28aÞ
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which has an infinity of roots, z1,z2, . . . ,zm. As a result, poles
occur at s = 0 and at

sm ¼ �D
z2m
L2
þ V2

4D2

 !
¼ � D

L2
z2m � Da2; m ¼ 1; 2; 3; . . . ð29aÞ

An exception to the above rule applies when the slope is
negative, i.e. a > 0, and 0 < (L � 2laL)/(a L2 � la2L2) < 1.
Only in that case Eq. (28a) does not have a solution in
0 6 z1 6 p and the first root of T 0(sm) = 0 is found for real val-
ues of bL, whence the root z1 is given by

tanh z1 ¼
z1ð2laL� LÞ

lz2 þ la2L2 � aL2
ð28bÞ

and the corresponding pole becomes

s1 ¼ D
z21
L2
� V2

4D2

 !
¼ D

L2
z21 � Da2: ð29bÞ

The first term in Eq. (25) corresponds to the pole at s = 0, is
calculated by Eq. (26a), gives the steady-state solution (rel-
ative to the initial steady flow) and is physically meaningful
only when 1 � 2la > 0,

Ro ¼ yð1� 2laÞ�1e2ax: ð30Þ

Eq. (26b) gives the remaining residua Rm, m = 1, 2, . . . ,1,
with so = sm from Eq. (27) for each zm:

Rm ¼
�2yeaxzm a sinðzmx=L� zmÞ þ zm

L
cosðzmx=L� zmÞ

� �
esmt

½a2 þ ðz2m=L
2Þ�½sin zmð2lzm þ Lzm � 2laLzmÞ þ cos zmðlz2m þ aL2 þ 2laL� la2L2 � LÞ�

;

ð31aÞ

when the root for bL is real [Eq. (28b), s1 from Eq. (29b)], R1
is calculated by

R1 ¼
�2yeaxz1 a sinhðz1x=L� z1Þ þ z1

L
coshðz1x=L� z1Þ

� �
es1 t

½a2 � ðz21=L
2Þ�½sinh z1ð2lz1 þ Lz1 � 2laLz1Þ þ cosh z1ðlz21 � aL2 � 2laLþ la2L2 þ LÞ�

:

ð31bÞ

Composing solutions of Eq. (5) for a step input is now
straightforward: the h(x, t)-series of Eq. (25) are formed
from Eqs. (30)–(31), which are evaluated with Eqs. (28)–
(29). The SRF, u(x, t), is the solution for a unit-impulse in-
put (determined by subtracting two unit steps, tpulse apart,
and taking the limit tpulse! 0) that is obtained directly from

uðx; tÞ ¼ ohðx; tÞ
ot

����
y¼1
: ð32aÞ

With the notation in Eq. (31), Rm = gm(a,l, L,zm,y)nm(x) ·
exp(smt), Eq. (32a) is restated as

uðx; tÞ ¼
X1
m¼1

smRmðx; tÞ ¼
X1
m¼1

gmða; l; L; zm; y ¼ 1ÞsmnmðxÞesmt:

ð32bÞ

Our purpose for deriving the SRF is to use it in the solution of
more complex problems, in which the forcing varies gradu-
ally in time, through application of the convolution princi-
ple. This will be shown in the companion paper Koussis
et al. (in review).

Special cases of the general solution

In the following we present some special cases such as the
solution for a sloping aquifer in the absence of a streambed
sediment layer, l = 0. In this case Eq. (31a) simplifies to
Rm ¼
�2yeaxzmesmt sin zmx

L

	 

z2m þ a2L2 � aL

ð33aÞ

and the zm are calculated from tanzm = zm/aL. Additionally, in
the event of a real bL-root [from Eq. (28b), specialised to
tanh z1 = z1/aL, and s1 from Eq. (29b)], R1 is calculated
by

R1 ¼
�2yeaxz1es1t sinh z1x

L

	 

z21 � a2L2 þ aL

; ð33bÞ

which is meaningful only when aL > 1 [see text after Eq.
(29a)], corresponding to values of ho < L tanu/2. The solu-
tion is obtained by substituting Eqs. (30) and (33) into Eq.
(25):

hðx; tÞ ¼ y e2ax þ eax
X1
m¼1

2zm sin
zmx
L

	 

aL� a2L2 � z2m

e
�D z2m

L2
þ V2

4D2

� �
t

" #
; ð34Þ

The first term is the steady-state and the second the tran-
sient solution; for t = 0, the series sum is �eax, giving
h(x, 0) = 0. Then, introducing Eq. (34) in Eq. (4) yields for
the flow rate:

qðx; tÞ ¼ �yKSeax

�
X1
m¼1

2z2mho cosu
LS

cos zmx
L

	 

þ zm sin

zmx
L

	 

aL� a2L2 � z2m

e
�D z2m

L2
þ V2

4D2

� �
t
:

ð35Þ

We are also in a position to give the solutions in dimension-
less form (see Eq. (6a)):

HðX;TÞ

¼ Y e�X=Do þ 2e�X=2Do
X1
m¼1

�zm sinðzmXÞ
1=2Doþ 1=4D2

oþ z2m
e�ðz

2
mþ1=4D2

oÞDoT

" #
;

ð36Þ
QðX;TÞ

¼ Ye�X=2Do
X1
m¼1

2z2mDo cosðzmXÞþ zm sinðzmXÞ
1=2Doþ 1=4D2

oþ z2m
e�ðz

2
mþ1=4D2

oÞDoT :

ð37Þ

The SRF for a sloping aquifer, in the absence of a streambed
sediment layer, is

uðx; tÞ ¼ 2
D

L2
eax
X1
m¼1

zm sin
zmx
L

	 

1� aL

a2L2þz2m

e
� D

L2
ðz2mþa2L2Þt; ð38Þ

or in dimensionless form

UðX;TÞ ¼ uðx; tÞ
KS=nL

¼ 2Doe
� X
2Do

X1
m¼1

zm sinðzmXÞ
1� aL

a2L2þz2m

e�ðz
2
mþa2L2ÞDoT : ð39Þ

The flow rate between stream and aquifer q(0, t) or
Q(0, T) is positive as aquifer inflow. This flow becomes infi-
nite for t = T = 0, consistent with the discontinuity due to
the step stage rise at the stream–aquifer interface, which
leads to an infinite hydraulic gradient there. Storage per
unit stream bank length is obtained from that flow rate
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through integration over time; it gives the volume of stream
water that has entered/exited a unit width of the aquifer
till time t:

volðtÞ ¼
Z t

0

qð0; sÞds; ð40Þ

volðtÞ

¼ �2nyL
X1
m¼1

z2m
ðz2m þ a2L2ÞðaL� a2L2 � z2mÞ

1� e
� D

L2
ðz2mþa2L2Þt

h i
;

ð41Þ

or, normalising with the water volume nyL,

VOLðTÞ ¼ volðtÞ
nyL

¼�2
X1
m¼1

z2m
ðz2m þ a2L2ÞðaL� a2L2� z2mÞ

½1� e�ðz
2
mþ1=4D2

0ÞDoT �:

ð42Þ

It is noted that the convolution principle concerns the re-
sponse relative to the initial condition. Convolution is
straightforward for a horizontal aquifer, as we can absorb
any constant initial condition in a net variable (h � his),
making the new initial depth zero. In the case of a sloping
aquifer however, the initial depth is variable; for this reason
the solution has been developed relative to that space-var-
iable initial condition (see text at the beginning of this sec-
tion). We reiterate that for the derived solution to be valid,
the water must always reach the inland boundary. Next, we
apply superposition in order to obtain the response of a
sloping aquifer to an abrupt change Dy (positive or negative)
from an initial stream stage his. The solution, stated includ-
ing the initial condition, reads

hðx; tÞ ¼ hise
2ax

þ Dy e2ax þ 2eax
X1
m¼1

zm sin
zmx
L

	 

aL� a2L2 � z2m

e
�D z2m

L2
þ V2

4D2

� �
t

 !
:

ð43Þ

In the case of a horizontal aquifer, S = 0, whence a = 0 and
Eq. (31) simplifies to

Rm ¼
�2y sinðzmx=LÞ þ lzm

L
cosðzmx=LÞ

� �
esmt

zm
l2z2m
L2
þ l

L
þ 1

� � ; ð44Þ

zm are the roots of tanzm = L/lzm, with which the first-order
poles sm are computed via Eq. (29a).

If the aquifer is horizontal and the streambed sediment
layer absent, a = 0 and l = 0, whence

Rm ¼ �
2y

zm
sin

zmx

L

� �
esmt; ð45Þ

in this case tanzm!1 and the roots are periodical

zm ¼
ð2m� 1Þ

2
p; m ¼ 1; 2; 3; . . . ;1; ð46Þ

giving as first-order poles

sm ¼
�Khoð2m� 1Þ2p2

4nL2
; m ¼ 1; 2; 3; . . . ;1 ð47Þ
Use of Eqs. (29) and (45)–(47) gives the results for a hor-
izontal aquifer (index h), with l = 0, which show a phase
shift of p/2 between the depth and flow profiles:

lim
S!0

hðx; tÞ ¼ hhðx; tÞ

¼ y 1�
X1
m¼1

4

ð2m� 1Þp sin
ð2m� 1Þp

2

x

L


 �
e
�Kho ð2m�1Þ2p2

4nL2
t

" #
;

ð48Þ
lim
S!0

qðx; tÞ ¼ qhðx; tÞ

¼ 2y
Kho

L

X1
m¼1

cos
ð2m� 1Þp

2

x

L


 �
e
�Kho ð2m�1Þ2p2

4nL2
t
: ð49Þ

The corresponding dimensionless expressions are:

HhðX;TÞ

¼ Y 1�
X1
m¼1

4

ð2m� 1Þp sin
ð2m� 1Þp

2
X


 �
e�

ð2m�1Þ2
4 p2DoT

( )
;

ð50Þ
Q hðX;TÞ

¼ 2YDo

X1
m¼1

cos
ð2m� 1Þp

2
X


 �
e�

ð2m�1Þ2
4 p2DoT ; ð51Þ

where the non-dimensional variables are as defined in Eq.
(6b). Carslaw and Jaeger (1959) derive Eq. (50) by solving
the pure conduction equation by operational methods; in
addition, Akylas et al. (2006) verify Eq. (50) by the classical
methodology of separation of variables. Then, proceeding
as before, we get from Eqs. (48) and (50) the SRF in dimen-
sional and in dimensionless form, respectively:

uhðx; tÞ ¼
D

L2

X1
m¼1
ð2m� 1Þp sin

ð2m� 1Þ
2

p
x

L


 �
e
� D

L2
ð2m�1Þ2

4 p2t
; ð52Þ

UhðX;TÞ ¼
uðx; tÞ
K=nL

¼ Do

X1
m¼1
ð2m� 1Þp sin

ð2m� 1Þ
2

pX


 �
e�Do

ð2m�1Þ2
4 p2T :

ð53Þ
Finally, bank storage from flow across the stream bank, Eqs.
(40)–(42), specialises to

volhðtÞ ¼ ðnyLÞ 1� 8

p2

X1
m¼1

1

ð2m� 1Þ2
e
� D

L2
ð2m�1Þ2

4 p2t

" #

¼ ðnyLÞVOLh ð54Þ
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Note that, at t = T = 0, exp(smt) = 1 and bank storage
volh(0) = VOLh(0) = 0 because the sum of the series is p2/8;
also, volh(t!1) = n y L, i.e., the aquifer fills to the stream
level.

As seen in Fig. 3, Eq. (49) agrees up to DoT � 0.1 with the
well-known similarity solution for diffusion in a semi-infinite
domain, after a step rise Y from a zero initial condition:

HhðX;TÞ ¼ Y 1� erf X=
ffiffiffiffiffiffiffiffiffiffiffi
4DoT

p� �h i
¼ Yerfc X=

ffiffiffiffiffiffiffiffiffiffiffi
4DoT

p� �
;

erfðWÞ ¼ ð2=p1=2Þ
Z W

0

expð�w2Þdw: ð55Þ

The expressions for the flow rate and the bank storage cor-
responding to Eqs. (51) and (54) are

Q hðX;TÞ ¼ Y

ffiffiffiffiffiffi
Do

pT

r
expð�X2=4DoTÞ; Q hð0;TÞ ¼ Y

ffiffiffiffiffiffi
Do

pT

r
;

ð56Þ

VOLhðTÞ ¼ Y

ffiffiffiffiffiffiffiffiffiffiffi
4DoT

p

r
: ð57Þ
If a stream with a sediment streambed layer (l 5 0) is
connected to a horizontal aquifer (S = 0), the first derivative
term in Eq. (17) vanishes (V = 0, a = 0), c1, c2 change accord-
ingly and the transformed solution Eq. (22) writes

FðxÞ ¼ y coshðbL� bxÞ
s½coshðbLÞ � bl sinhðbLÞ� : ð58Þ

Moench and Barlow (2000) derived a version of Eq. (58),
without inverting it analytically however. Inverting from
the s-domain [poles: s = 0, sm, m = 1,2, . . . ,1, from Eq.
(29a) for V = 0; zm from tan zm = L/lzm], Eqs. (25) and (34) give
as time-domain step response and SRF:

hhðx; tÞ ¼ y 1� 2
X1
m¼1

sin zmx
L

	 

þ zm

l
L
cos zmx

L

	 

zm 1þ z2m

l2

L2

� � e
�Dz2m

L2
t

2
4

3
5; ð59Þ

uhðx; tÞ ¼ 2
D

L2

X1
m¼1

zm sin zmx
L

	 

þ zm

l
L cos

zmx
L

	 
� �
1þ z2m

l2

L2

� � e
�Dz2m

L2
t
: ð60Þ
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Sensitivity study

The following example demonstrates primarily the influence
of the slope on the aquifer response. The initial stream
depth, his = 10 m, changes abruptly by y = 1 m. This 1-m
change appears small, if the stream is assumed to, indeed,
fully penetrate the aquifer. If, however, the stream pene-
trates the aquifer by, say, 25% (as in the field case modelled
in our companion paper, Koussis et al., in review), the rel-
ative stream depth change for the 1-m stage variation is
40% (1 m/2.5 m). The aquifer parameters are: L = 100 m,
K = 25 m/day, n = 0.2, angle of base inclination u = 0� and
±3�; the conductivity of the streambed is Ks = 2.5 m/day.
To study the sensitivity to the leakance, we consider sedi-
ment bed thickness values bs = 0 and 1.0 m, with respective
leakances l = 0 and 10 m. We would like to also note that, as
a result of geologic processes (faults, lifting and erosion),
negative base slopes, indeed, occur in nature.

The linearisation depth can be estimated by Eq. (16) (or,
more roughly, as the mean depth of the horizontal water
surface profile). But these steady-state estimates should
be adjusted for transient flow. In the case of a step input,
we may simply take the estimate from the steady state solu-
tion for hs(0) = his + y/2. Generally however, appropriate
values should take into account the character of a transient,
as discussed in the companion paper Koussis et al. (in re-
view). The linearisation depth depends also on the leak-
ance, which approximately extends the aquifer length to
an equivalent L + l, to account for the added flow resistance
(steady state) by the streambed layer. In this example the
values differ slightly relative to the case without a stream-
bed layer: u = 3�, hocosu = 8.62 m for l = 0 versus 8.52 m for
l = 10 m; u = �3�, hocosu = 12.11 m for l = 0 versus 12.28 m
for l = 10 m.

Fig. 4a shows water level hydrographs (relative to the ini-
tial steady state) at the mid-point of the aquifer, x = 50 m,
with u = ±3� as curve parameter for bs = 0 and 1.0 m (l = 0
and 10 m) and Fig. 4b shows the hydrographs with bs = 0
and 1.0 m as curve parameter for u = ±3�; the hydrographs
for the horizontal aquifer, linearised properly at
ho = 10.5 m, are also included for reference. Finally,
Fig. 4c shows aquifer level profiles (relative to the initial
condition), at t = 100 hours. In all figures, water levels in ex-
cess of the stream level can occur; as already discussed,
these are owed to the chosen optimisation criterion for
the specification of the linearisation depth.

The differences among the hydrographs due to the slope
are significant, indicating that the inclination of the aquifer
base should not be ignored, even at relatively small angles.
We observe that the water level discrepancies are stronger
between an aquifer inclined at u = +3� and the horizontal
aquifer than between an aquifer inclined at u = �3� and
the horizontal aquifer. The leakance, l = bsK/Ks, is seen in
Fig. 4 to play also an important role in the response of an
aquifer, influencing the behaviour of the aquifer most on
positive slopes. In the case of u = �3�, we observe that
the aquifer levels for l = 0 initially exceed those obtained
when leakance is included; this order is reversed in later
times and the curves cross. This behaviour is explained as
follows: at early times, in the absence of a streambed layer
(no added resistance), the stream water enters the aquifer
more readily than when a sediment layer is present. At later
times, however, the solution is dictated increasingly by the
steady flow conditions, which, in the case of u < 0, give
higher water levels when a streambed layer exists.
Summary

We derive Laplace transform solutions, which we invert ana-
lytically, for the interaction of a stream with a sloping
unconfined aquifer that it penetrates fully. These solutions
are based on the linearised 1-D Boussinesq equation (Dupuit
assumption), extended for a sloping aquifer base; an imper-
vious barrier bounds the aquifer at its landward end. The
validity of the linear hydraulic model is critiqued and an
objective definition of the linearisation level is developed.
The solutions account for a low-conductivity streambed
layer, when such a layer is present, and treat the horizontal
aquifer case in the zero-slope limit. Unit-impulse responses
are also derived that can be used to solve complex problems
through convolution. In a special case, we verify our solu-
tion against known analytical results for step inputs. Signif-
icant differences of responses to step inputs are found for
aquifers on u = �3�, u = 0� and u = +3� base slopes, and
for a stream with and without a low-conductivity bed layer.
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