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In the present study, we investigate, using inviscid rapid distortion theory, the evolution of sheared
turbulence in a rotating frame as a function of the rotation rate �including stable, transitional, and
unstable regimes�, and examine the sensitivity of the results for various nonisotropic initial
conditions. Analytical solutions are derived for the evolution of the stresses and the structure
dimensionality tensor components for three one-dimensional and three two-dimensional
initializations. From these solutions, we calculate the asymptotic states of the turbulence, which are
compared to the exact numerical solution of the three-dimensional initially isotropic case. From the
investigation it is shown that the qualitative characteristics of the isotropic solution in the unstable
regime are represented quite accurately when the initial turbulence is dependent at least on the axis
of the rotation of the frame. For the transitional and the stable regimes, though, the initial
dependence of the turbulence on the axis of the mean flow is also crucial. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2675939�

I. INTRODUCTION

The effects of system rotation on turbulent shear flows
have received considerable attention because of their rel-
evance to important technological and astrophysical prob-
lems. The state of sheared turbulence changes significantly
when it is subjected to frame rotation. Numerical studies
�Bardina et al.,1 Lee et al.,2 Salhi and Cambon3� have clearly
shown that rotation can act to either stabilize or destabilize
turbulent shear flow, depending on the ratio of the frame
rotation rate to the shear rate. Recently, Brethouwer4 has
used a combination of theoretical analysis and numerical
simulations to investigate the effect of frame rotation on the
transport of a passive scalar in homogeneous shear flow.
Studies such as these have helped to clarify the global fea-
tures of homogeneous shear flow in a rotating frame.

Apart from experiments and direct numerical simula-
tions �DNS�, considerable insight in the stability of rotated
shear flows can be gained through rapid distortion theory
�RDT�. In the framework of RDT, linearized equations of
motion are used to explain some of the significant kinemati-
cal and dynamical responses of turbulence to imposed defor-
mation. The theory is valid for all kinds of rapidly changing
turbulent flows, when the distortion is applied for a time that
is short compared to the “turn-over” time scale of the energy
containing eddies; that is, the initial response to a sudden
change in the mean deformation. Furthermore, RDT is also a
good approximation, in cases where the ratio of the mean
deformation time scale over the eddy turn-over time scale is
much smaller than 1 �Pope,5 Hanazaki and Hunt6�, which
ensures that the nonlinear terms in the governing turbulence
equations involving products of fluctuation quantities are still
negligible; then the turbulence is affected mostly by the

mean flow and not by the turbulence itself. Thus, the nonlin-
ear terms are neglected, resulting in RDT equations that are
linear in the fluctuation quantities. The solutions to these
linearized equations can be used to calculate the characteris-
tics of the development of the energy spectrum tensor, two-
point correlations and other turbulence statistical quantities
of interest. For example, in the case of homogeneous shear in
a rotating frame, a comparison of the values of the normal-
ized Reynolds stress components predicted by inviscid RDT
at St=10 with the corresponding values predicted by the
large-eddy simulation �LES� of Bardina et al., shows the two
to be in excellent agreement �Kassinos and Reynolds7�. Al-
though RDT equations imply simplifications, for many cases
they can be considered valid. In real nature there are regions
of turbulent flows, far from equilibrium, where the local pro-
duction of turbulent kinetic energy outweighs dissipation,
and where the turbulence time scale is substantially larger
than the mean flow time scale. For instance, in the viscous
near-wall region of the ubiquitous turbulent boundary layer,
the ratio of the above time scales is of the order of 10 and
RDT can give useful insight. More specifically, fully nonlin-
ear DNS results �Spalart,8 Moser9� point to a distribution of
energy in the Reynolds stress tensor, significantly different
from the log-layer distribution, and in fact, though still far, it
does grow impressively close to the asymptotic shear limits
predicted from RDT. In addition, when a given flow sud-
denly encounters a new type of mean deformation, shear, or
rotation, the initial response of the turbulence is well de-
scribed by RDT, as in the case of flow over obstacles �Britter
et al.,10 Gong et al.11�. In general, the investigation of RDT
solutions offers qualitative information for the trends of the
turbulent structure in real problems, as, for example, the in-
vestigation of the stably stratified boundary layer �Galmiche
and Hunt12� and the nonstratified log-layer �Nazarenko13�.

RDT is a closed theory for two-point correlations or
spectra, but the one-point governing equations are, in gen-
eral, not closed due to the nonlocality of the pressure fluc-
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tuations �Townsend,14 Hunt,15 Savill,16 Hunt and
Carruthers,17 Cambon and Scott18�. Simple cases of rapid
deformation often admit closed-form solutions for individual
Fourier coefficients. Even when such closed-form solutions
are possible in spectral space, the integrals involved in form-
ing the corresponding one-point statistics are often too com-
plex to evaluate in closed form, and one is then forced to
resort to numerical integration. The few cases for which
closed-form solutions can be obtained for one-point statis-
tics, like the Reynolds stresses, offer valuable insight. For
example, Salhi19 derived complicated analytical expressions
for the evolution of the turbulent kinetic energy spectrum for
generalized frame rotation rates. Rogers20 was able to find
closed-form solutions for all the components of the spectrum
tensor for homogeneous turbulence that is being sheared in a
fixed frame. These solutions provide valuable insight in the
distribution of energy in spectral space and also lead to some
estimates of the asymptotic behavior of one-point statistics,
such as the Reynolds stresses, in the limit of large total shear.
Akylas et al.21 have looked at the case of homogeneous tur-
bulence that is sheared in a frame that counter-rotates at a
rotation rate that matches in magnitude the rotation associ-
ated with the mean shear. Along with spectral solutions, they
have also derived analytical expressions for the evolution of
the stresses and the structure dimensionality tensor compo-
nents in physical space.

In the present study we use inviscid RDT to investigate
the evolution of turbulence for various rotation rates, exam-
ining the sensitivity of the solutions to various nonisotropic
initial conditions. The investigation covers the development
of the Reynolds stresses Rij =uiuj and the structure dimen-
sionality tensor Dij, introduced by Kassinos et al.22 �see Sec.
III�. The combined use of these tensors allows one to distin-
guish between the componentality of the turbulence �de-
scribed by the Reynolds stress tensor� and its dimensionality,
which has to do with the morphology of the turbulence ed-
dies, and is described by the structure dimensionality tensor
Dij. For example, if D11=0, then the turbulence is indepen-
dent of the x1 axis; that is, it consists of very long structures
aligned with the x1 direction.

We solve analytically the RDT equations for three one-
dimensional �1D� and three two-dimensional �2D� initializa-
tions in terms of the Reynolds stresses and the structure di-
mensionality tensor components. The simplified nonisotropic
solutions are compared with the three-dimensional �3D� ini-
tially isotropic case �solved using the particle representation
model �PRM� developed by Kassinos and Reynolds23�, in
order to assess their potential as a simplified qualitative rep-
resentation. In fact, in the unstable regime we find good
agreement for most quantities, when the initial turbulence is
dependent at least on the axis of the rotation of the frame. In
contrast, for the transitional and the stable regimes, the initial
dependence of the turbulence on the axis of the mean flow is
also necessary for good agreement. The findings of this work
can be seen as additional information on the trends of the
turbulence that is sheared in a rotating frame.

A strong motivation for this study arose from our efforts
in developing an algebraic structure-based turbulence model,
which has been successfully used, so far, to compute the

characteristics of rotating turbulent channel and boundary
layer flow �Kassinos et al.24�. The model uses the RDT
asymptotic limits as targets or guidelines, for determining the
anisotropy of the Reynolds stress and structure dimensional-
ity tensors, under strong deformations, aiming to improve the
dependability and reliability. In addition, as mentioned
above, in the viscous near-wall region, the turbulence struc-
ture does look much more like the asymptotic limits than like
the structure in the log-layer, or in equilibrium homogeneous
shear flow.

In Sec. II of this study we present the basic linearized
RDT equations for the general 3D case. In Sec. III we ex-
plain the structure dimensionality tensor and illustrate the
information it carries about the morphology of the turbu-
lence. In Sec. IV we develop the analytical solutions for the
1D and 2D alternative initializations of the original 3D prob-
lem, and in Sec. V we present the comparisons between the
3D initially isotropic solution and the alternative initializa-
tions examined here.

II. LINEARIZED EQUATIONS

The inviscid RDT transport equations for the fluctuating
velocity components ui, in the case of a constant shear in a
rotating frame, become �Akylas et al.,21 Kassinos and
Reynolds,23 Brethouwer4�

�ui

�t
+ Sx2

�ui

�x1
= − �i1Su2 −

1

�

�p

�xi
+ �ij32� fuj , �2.1�

where S=dU1 /dx2 is the constant mean velocity gradient and
� f is the frame rotation rate �Fig. 1�. Using the Rogallo25

transformation, we set

�1 = x1 − x2St, �2 = x2, �3 = x3, � = t , �2.2�

and �2.1� transforms to

FIG. 1. Illustration of the general case for nonstratified homogeneous tur-
bulence that is sheared in a rotating frame which is examined here.
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�ui

��
= − �i1Su2 −

1

�

�p

��i
+ �i2S�

1

�

�p

��1
+ �ij32� fuj . �2.3�

Through �2.3�, the Fourier transformed variables �denoted
with “∧”� evolve according to

dûi

d�
= − �i1Sû2 +

i

�
p̂�ki − �i2S�k1� + �ij32� fûj . �2.4�

Applying the Fourier transformed continuity equation, i.e.,
kiûi=0, in �2.4�, we can solve for the pressure

i

�
p̂ =

− k12� fû2 + �k2 − S�k1�2� fû1 + 2k1Sû2

k1
2 + k3

2 + �k2 − S�k1�2 , �2.5�

and by substituting into the system �2.4�, this simplifies to

dû1

d�
=

− k1�û2 + �k2 − k1���û1 + 2k1û2

k0
2 − 2k1k2� + k1

2�2 k1 + �� − 1�û2,

dû2

d�
=

− k1�û2 + �k2 − k1���û1 + 2k1û2

k0
2 − 2k1k2� + k1

2�2 �k2 − k1�� − �û1,

�2.6�

dû3

d�
=

− k1�û2 + �k2 − k1���û1 + 2k1û2

k0
2 − 2k1k2� + k1

2�2 k3,

where k0
2=k1

2+k2
2+k3

2, �=St �total shear�, and �=2� f /S. The
3D system �2.6� can be simplified for certain 1D or 2D ini-
tializations by setting specific components of the wave num-
ber vector equal to 0. In such cases, it is possible to derive
analytical solutions for the evolution of the spectra of the
turbulence Eij � ûiûj

*, as shown in Sec. IV. By integrating the
spectra over all the wave numbers, we obtain analytical ex-
pressions in physical space for the development of the stress
components Rij =uiuj =���kEijd

3k, and the structure dimen-
sionality tensor Dij �3.1�, which is described in detail in the
next section.

III. THE STRUCTURE DIMENSIONALITY TENSOR

A convenient method to describe the morphology of tur-
bulent fields is by using the one-point turbulence structure
tensors, introduced by Reynolds26 and Kassinos et al.22

These tensors help to distinguish between the componental-
ity of the turbulence �described by the Reynolds stress ten-
sor� and its dimensionality, which has to do with the spatial
structure of the turbulence eddies, and is described by the
structure dimensionality tensor.

For homogeneous turbulence, the structure dimensional-
ity tensor takes the form

Dij =� � �
k

Enn�k�
kikj

k2 d3k , �3.1�

where k is the wave number vector, ûi are the Fourier veloc-
ity components, and Eij�k�� ûiûj

* is the velocity spectrum
tensor. From �3.1� it can be shown that for homogeneous
turbulence,

Rkk = Dkk = q2, �3.2�

where q2 is twice the turbulent kinetic energy. One can define
the normalized tensors

rij = Rij/Rkk, dij = Dij/Dkk, �3.3�

and it follows that their traces are

rkk = dkk = 1. �3.4�

For isotropic turbulence, rij =dij =�ij /3. In anisotropic turbu-
lence, the combination of rij and dij gives a fairly detailed
description of the turbulence structure. For example, d11�0
and r11�0 means that the dominant large-scale structures are
very nearly 2D eddies aligned with the x1 axis, with motion
confined in the plane normal to the eddy axis. We call struc-
tures of this type vortical eddies �Fig. 2�a��. On the other
hand, d11�0 and r11�1 correspond to 2D structures �ed-
dies� aligned with the x1 axis. The motion is then confined
along the eddy axis in the form of jets and wakes. We call
turbulence structures of this second type jetal eddies �Fig.
2�b��. A third type of turbulence structure is obtained when
we have correlated jetal and vortical motion which corre-
sponds to 2D-3C helical eddies �Fig. 2�c��. In general, a
turbulence field is formed by a combination of correlated
vortical, jetal, and helical eddies.

Turbulence eddies can also become flattened; that is,
their cross section can be nonaxisymmetric. The flattening of
the eddies is detected by the structure dimensionality tensor,
as depicted in idealized form in Fig. 3, where the eddies are
assumed long in the x3 direction �d33→0�. From the same
figure it can be noticed that at the 1D limit with d11=1 or
d22=1, the turbulence tends to form sheets, which extend
perpendicularly to the x1 or x2 axis, respectively. Kassinos et
al.22,27 explored in detail the properties of the structure di-
mensionality tensor, using DNS data from a wide range of
homogeneous and inhomogeneous flows.

FIG. 2. Schematic diagram showing idealized 2D structures �eddies� in
homogeneous turbulence and the associated componentality and dimension-
ality for �a� vortical eddy, �b� jetal eddy, and �c� helical eddy.
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IV. ANALYTICAL SOLUTIONS FOR THE EVOLUTION
OF TURBULENCE FOR VARIOUS NONISOTROPIC
INITIAL CONDITIONS

As mentioned, the 3D system �2.6� can be simplified for
certain 1D or 2D initializations, which implies setting spe-
cific wave numbers equal to 0, making it amenable to ana-
lytical solutions. For instance, setting k1=0 means that the
turbulence is initially composed of eddies that are elongated
in the direction of the mean flow �x1 axis�. Instead of a 3D
initialization, where the initial turbulence depends on all di-
rections, we may alternatively use three different 1D �for
example, corresponding to k2=k3=0� or three different 2D
initializations �either k1, k2, or k3 equals 0�. In this section,
we present analytical solutions of �2.6� for all these possible
initial states and we discuss their characteristics in terms of
the evolution of the stresses and the structure dimensionality
tensor components. From the analytical solutions we calcu-
late the RDT asymptotic states for large values of total shear
�, which in fact are approached relatively fast �i.e., ��10�,
especially for the cases in which the energy grows. As men-
tioned before, RDT is a meaningful approximation, when
S��1 �� is the representative eddy turn-over time scale�,
irrespective of the value of the total shear �. Furthermore, a
comparison �Kassinos and Reynolds7� of the initially isotro-
pic RDT results and LES of Bardina et al.1 showed clear
agreement. The RDT results are presented here in terms of
the normalized stresses rij =Rij /Rkk, which give information
on the evolution of the componentality of the problem. The
analysis extends also to the normalized structure dimension-
ality tensor components dij =Dij /Dkk, which give information

on the morphology of the turbulent field and help to describe
the level of the anisotropy of the dimensionality of the
turbulence.

A. 1D-2C initializations

In the case of 1D initializations, there are three possibili-
ties to investigate, corresponding to either k1, k2, or k3 dif-
ferent than 0, which means that the turbulence depends ini-
tially on x1, x2, or x3 axis, respectively.

1. k1=k2=0, k3Å0

This initialization corresponds to vortex sheets that are
normal to the spanwise direction x3. In this case, the general
solution of the system �2.6� yields

û1 =
1

2
û1

0�e	��1−��� + e−	��1−����

−
1

2
	�1 − ��

�
û2

0�e	��1−��� − e−	��1−���� ,

û2 =
1

2
û2

0�e	��1−��� + e−	��1−����

−
1

2
	 �

�1 − ��
û1

0�e	��1−��� − e−	��1−���� , �4.1�

û3 = 0.

Thus, the stresses develop as

R11 =
1

4
R11

0 �e	��1−��� + e−	��1−����2

+
1

4

�1 − ��
�

R22
0 �e	��1−��� − e−	��1−����2,

R22 =
1

4
R22

0 �e	��1−��� + e−	��1−����2

+
1

4

�

�1 − ��
R11

0 �e	��1−��� − e−	��1−����2,

�4.2�
R33 = 0,

R12 = −
1

4

	 �

�1 − ��
R11

0 +	�1 − ��
�

R22
0 ��e	��1−���

− e−	��1−���� .

In the above, the growth of the stresses changes according to
the value of �. Four cases of � can be categorized, as de-
scribed below. For all these cases, the components of the
structure dimensionality tensor are zero apart from D33=Rkk,
which means that these solutions remain strongly 1D at all
times, with all the dependence being on the axis of the frame
rotation �d33=1�. Thus, the initial vortex sheets are preserved
and there is a redistribution of the energy.

FIG. 3. Schematic diagram showing the flattening of turbulent eddies that
are assumed to be elongated in the x3 direction �d33→0�. �a� axisymmetric
eddy, �b� horizontally flattened eddy, and �c� vertically flattened eddy.
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a. No frame rotation, �=0. For this case, when there is
only shear and no rotation of the frame, the exponents in
�4.2� are zero. By taking the appropriate limits of �4.2� at
�=0, the solution for the stresses becomes

R11 = R11
0 + �2R22

0 , R22 = R22
0 , R33 = 0, R12 = − �R22

0 .

�4.3�

From �4.3� it follows that the evolution of the turbulent ki-
netic energy is of the form q2��2, and the initially vortical
1D-2C turbulence is driven fast to an 1D-1C state with r11

→1, d33=1, resulting in the appearance of sheets extending
perpendicular to the axis of the frame rotation, while the
turbulent velocity aligns with the axis of the mean flow.

b. Counter-rotating frame, �=1. For positive values of
�, the frame vorticity has the sign opposite that of the mean
vorticity associated with the shear. When �=1, the frame
counter-rotates at a rotation rate that matches in magnitude
that of the mean shear. For this choice, through �4.2� the
stresses evolve as

R11 = R11
0 , R22 = R22

0 + �2R11
0 , R33 = 0, R12 = − �R11

0 .

�4.4�

Like the previous case �for �=0�, the evolution of the turbu-
lent kinetic energy when �=1, is of the form q2��2 and the
asymptotic state for the turbulence is 1D-1C with r22→1,
d33=1. Thus, the resulting structure corresponds to sheets
normal to the rotation axis but with the velocity components
aligned with the direction x2.

c. Counter-rotating frame, 0	�	1. When � lies be-
tween 0 and 1, the frame is counter-rotating at a rate that is
smaller than the rotation rate associated with the mean shear
itself. This is the unstable regime where the turbulent kinetic
energy grows exponentially with time, since the exponents in
�4.2� are nonzero real numbers. From �4.2� it follows that for
large �, the turbulent kinetic energy grows as q2

�exp 2	��1−��� and, for a vortical initialization with
R11

0 =R22
0 =q0

2 /2, the turbulence reaches asymptotically a
2C-1D state with r11→ �1−��, r22→�, d33=1. This state
corresponds to sheets perpendicular to the axis of the frame
rotation with the fluctuating velocities being inclined to the
other two axes at an angle that depends on �.

d. Co-rotating, and counter-rotating at high rates: �
	0, and �
1. We consider now the case when the frame is
rotating with the same direction as the mean rotation associ-
ated with the mean shear or counter-rotating at a rate that
exceeds the one associated with the mean shear. For these
cases, the exponents in �4.2� become imaginary numbers and
thus, the solution characterizes a stable energy regime where
the stresses show an oscillating behavior. From �4.2� we may
conclude that when starting with the vortical 1D-2C state,
i.e., R11

0 =R22
0 =q0

2 /2, the turbulent kinetic energy evolves
as Rii /q0

2= �4���−1�+1−cos�2	���−1���
 /4���−1�. The
turbulence has a 2C-1D character, since d33=1 and the nor-
malized stresses oscillate around the values r11→ ��
−1� / �2�−1�, r22→� / �2�−1�, r33=0. This state corresponds
to sheets perpendicular to the axis of the frame rotation and
turbulent velocities that oscillate about a mean angle of in-
clination, relative to the other two axes, which depends on �.

2. k2=k3=0, k1Å0

For this initialization, the transformed components are
independent of �, in agreement with the principle of material
indifference �Speziale28� for turbulent motion independent of
the direction of the frame rotation �k3=0�. The stresses �ex-
cept R33, which remains constant� show a diminishing behav-
ior of the following form:

R11 =
�2

�1 + �2�2R22
0 , R22 =

1

�1 + �2�2R22
0 ,

�4.5�

R33 = R33
0 , R12 =

�

�1 + �2�2R22
0 ,

where the superscript “0” is used to denote an initial value.
The development of the structure dimensionality tensor com-
ponents

D11 =
R22

0

�1 + �2�2 +
R33

0

1 + �2 , D22 = D11�
2, D33 = 0,

�4.6�

imply that, although this initialization starts as 1D depending
only on the x1 direction �d11�0�=1�, it evolves as 2D, form-
ing helical eddies that are gradually flattened along the x2

axis and approaches finally an 1D state, resulting in sheets
that develop perpendicular to the axis of the gradient of the
mean velocity �d22→1�. The velocity fluctuations are
aligned with the axis of the frame rotation �r33→1�.

3. k1=k3=0, k2Å0

In this case, unlike the previous ones, the stresses and
the structure dimensionality tensor components are constant,
and thus the turbulence remains fixed in its initial state, in-
dependent of � and �. Again, this is consistent with the
expected material indifference of 2D turbulence, which is
independent of the direction of the frame rotation.

B. 2D-3C initializations

We now turn to the 2D initializations for which there are
three options, with either k1, k2, or k3 equal to zero. When the
componentality of the initially 2D turbulence is isotropic in
planes perpendicular to the axis of independence x� ��=1, 2,
or 3�, the initial turbulence is vortical and its spectrum is
given by �no summation implied by repeated indices�

Eij
0 �k0� =

E�k0�
2�k


�ij −
kikj

k0
2 ��1 − �i���1 − � j�� , �4.7�

for i=1,2 ,3, j=1,2 ,3.
Another possibility is for the initial turbulence to be

completely jetal, with all the velocity fluctuations being in
the direction of the axis of independence x�. The initial jetal
spectrum corresponding to this condition is �no summation
implied by repeated indices�
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Eij
0 �k0� =

E�k0�
2�k0

�i�� j�, for i = 1,2,3, j = 1,2,3.

�4.8�

In the relations �4.7� and �4.8� the initial turbulent kinetic
energy spectrum E�k0� satisfies

�
k0=0

�

E�k0�dk0 =
q0

2

2
=

Rii
0

2
. �4.9�

Because of the linearity of the governing equations, the so-
lutions for the initially jetal 2D-1C and the vortical 2D-2C
cases can be superimposed to produce Rij and Dij for various
2D-3C initial fields consisting of uncorrelated jets and
vortices.

1. k3=0

In this case, where the turbulence is independent of the
axis of the frame rotation, the system �2.6� becomes indepen-
dent of �, consistent with the principle of material indiffer-
ence of 2D turbulence,28 and the spectral solution yields

E11 =
k0

4�E11
0 + �2E22

0 + ��E12
0 + E21

0 ��
�k1

2 + �k2 − k1��2�2 ,

E22 =
k0

4E22
0

�k1
2 + �k2 − k1��2�2 , �4.10�

E33 = E33
0 , E12 =

k0
4�E22

0 + k0
4E12

0

�k1
2 + �k2 − k1��2�2 .

From the above, it is apparent that the jetal initialization
results in a constant turbulent kinetic energy state, with all
the stresses zero apart from R33:

R11
jet/q0

2 = 0, R22
jet/q0

2 = 0, R33
jet/q0

2 = 1, R12
jet/q0

2 = 0.

�4.11�

However, by integrating �3.1� we find that the dimensionality
structure tensor components evolve as

D11
jet =

2

4 + �2q0
2, D22

jet =
2 + �2

4 + �2q0
2,

�4.12�

D33
jet = 0, D12

jet = −
2 + �2

4� + �3q0
2,

and as a result, the jetal initialization approaches a 1D-1C
state with r33

jet=1, d22
jet→1, forming sheets that develop per-

pendicular to the x2 axis �axis of the gradient of the mean
velocity�.

On the other hand, when the initially vortical velocity
spectrum tensor �4.7� is used, the integrations produce a con-
stant state:

R11
vor = D11

vor = q0
2/2, R22

vor = D22
vor = q0

2/2,

�4.13�
R33

vor = D33
vor = 0, R12

vor = D12
vor = 0.

As a result, initially vortical 2D-2C turbulence which is ini-
tially independent on the axis of the rotation of the frame
remains unaffected by mean shear and rotation.

2. k1=0

When the turbulence is initially independent of the di-
rection of the mean flow, thus consisting of elongated eddies
aligned with the streamwise direction, the general solution of
�2.6� reads

û1 = û1
0 cosh
 k3

k
	��1 − ����

− û2
0	1 − �

�

k

k3
sinh
 k3

k
	��1 − ���� ,

û2 = û2
0 cosh
 k3

k
	��1 − ����

− û1
0	 �

1 − �

k3

k
sinh
 k3

k
	��1 − ���� , �4.14�

û3 = û1
0	 �

1 − �

k2

k
sinh
 k3

k
	��1 − ����

−
k2

k3
û2

0 cosh
 k3

k
	��1 − ���� ,

and, in the case of the initially vortical velocity spectrum, the
integration of �4.7� results in the following evolution of the
stress components:

R11
vor

q0
2 =

1

2

1 − �

�
�− 1 + I0�2	��1 − ����
 ,

R22
vor

q0
2 =

1

4
+

I0�2	��1 − ����
2

−
I1�2	��1 − ����

4	��1 − ���
,

�4.15�
R33

vor

q0
2 =

1

4
+

I1�2	��1 − ����

4	��1 − ���
,

R12
vor

q0
2 = −

1

2
	1 − �

�
I1�2	��1 − ���� ,

where In are Bessel functions of the first kind. From �4.15�,
the turbulent kinetic energy evolves as

Rii
vor

q0
2 = �−

1 − 2�

2�
+

1

2�
I0�2	��1 − ����� . �4.16�

Similarly, the components of the structure dimensionality
tensor are
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D11
vor = 0,

D22
vor

q0
2 =

2� − 1

4�
+

I1�2	��1 − ����

4�	��1 − ���
, D12

vor = 0,

�4.17�
D33

vor

q0
2 =

2� − 1

4�
+

1

2�
I0�2	��1 − ����

−
I1�2	��1 − ����

4�	��1 − ���
.

When a jetal initialization is used, the solutions for the
stresses �through �4.8�� become

R11
jet

q0
2 =

1

2
+

I0�2	��1 − ����
2

,

R22
jet

q0
2 =

�

1 − �
�−

1

4
+

I0�2	��1 − ����
2

−
I1�2	��1 − ����

4	��1 − ���
� ,

�4.18�
R33

jet

q0
2 =

�

1 − �
�−

1

4
+

I1�2	��1 − ����

4	��1 − ���
� ,

R12
jet

q0
2 = −

1

2
	 �

1 − �
I1�2	��1 − ���� ,

and the trace evolves as

Rii
jet

q0
2 =

1 − 2�

2�1 − ��
+

1

2�1 − ��
I0�2	��1 − ���� . �4.19�

In addition, the dimensionality structure tensor is calculated
as

D11
jet = 0,

D22
jet

q0
2 =

1 − 2�

4�1 − ��
+

I1�2	��1 − ����

4�1 − ��	��1 − ���
, D12

jet = 0,

�4.20�
D33

jet

q0
2 =

1 − 2�

4�1 − ��
+

1

2�1 − ��
I0�2	��1 − ����

−
I1�2	��1 − ����

4�1 − ��	��1 − ���
.

As in the 1D initialization with k1=k2=0, we may categorize
the dependence of the solution of � in the same four
categories.

a. No frame rotation, �=0. For this case, when there is
only shear and no rotation, the arguments in the Bessel func-
tions in equations �4.15�–�4.20� are zero. In the vortical case,
from �4.15� and �4.17� we calculate

R11
vor = q0

2�2/2, R22
vor = q0

2/2,

R33
vor = q0

2/2, R12
vor = − q0

2�/2,

�4.21�
D11

vor = 0, D22
vor = q0

2�1 + �2/4� ,

D33
vor = q0

2�1 + 3�2/4�, D12
vor = 0.

From Eqs. �4.21� we may note that at large total shear �, the
normalized stresses rij =Rij /Rkk and structure dimensionality
tensor components dij =Dij /Rkk, become

r11
vor → 1, d22

vor → 1/4, d33
vor → 3/4. �4.22�

This means that the initially 2D vortical turbulence is driven
to jetal turbulence, with eddies flattened along the x3 axis.

In the case of initially jetal turbulence, the limits of
�4.18� and �4.20� result in a constant state equal to the initial
one, and as a result, the 3C solution obtained through the
superposition of the vortical and the jetal parts is dominated
by the vortical part.

b. Counter-rotating frame, �=1. When �=1, the frame
counter rotates at a rate that is equal in magnitude to the
intrinsic rotation of the mean shear. As in the previous case,
the arguments in the Bessel functions in Eqs. �4.15�–�4.20�
vanish. Using a vortical initial spectrum, we find that the
one-point statistics of the initially vortical turbulence �Eqs.
�4.15� and �4.17�� remain completely unaffected by the com-
bined action of the mean shear and the frame rotation. How-
ever, when the initial jetal spectrum is used, the turbulent
stresses �4.18� and the structure dimensionality tensor com-
ponents �4.20� evolve according to

R11
jet = q0

2, R22
jet = 3q0

2�2/8,

R33
jet = q0

2�2/8, R12
jet = − q0

2�/2,

�4.23�
D11

jet = 0, D22
jet = q0

2�1/2 + �2/8� ,

D33
jet = q0

2�1/2 + 3�2/8�, D12
jet = 0.

From Eqs. �4.23�, it follows that as the total shear � in-
creases, the normalized stresses rij =Rij /Rkk and the normal-
ized structure dimensionality tensor components dij

=Dij /Rkk tend to the following 2D-2C state:

r22
jet → 3/4, r33

jet → 1/4, d22
jet → 1/4, d33

jet → 3/4,

�4.24�

which means that when �=1 the mean shear drives 2D ini-
tially jetal turbulence to a vortical state with flattened struc-
tures and unequal distribution of the energy between the di-
rections normal to the axis of the mean flow.

c. Counter-rotating frame, 0	�	1. This case is when
the frame is counter-rotating at a rate that is smaller than the
rotation rate associated with the mean shear itself. For these
cases the arguments in the Bessel functions in �4.15�–�4.20�
are nonzero positive real numbers. In the limit of infinite
total shear, for a vortical initialization, the normalized
stresses and the structure dimensionality tensor components
tend to a 1D-2C state with
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r11
vor → 1 − �, r22

vor → �, r33
vor → 0, r12

vor → − 	��1 − �� ,

�4.25�
d11

vor → 0, d22
vor → 0, d33

vor → 1, d12
vor → 0.

All the dependence is confined along the axis of the frame
rotation, while the distribution of the energy in the plane
normal to the axis depends on the actual value of �. Such a
state corresponds to sheets extending perpendicular to the
axis of the frame rotation and turbulent motion aligning with
the other two directions.

For a jetal initialization, from the equations
�4.18�–�4.20� it follows that the asymptotic behavior of the
normalized stress and the structure dimensionality tensor
components are

r11
jet → 1 − �, r22

jet → �, r33
jet → 0, r12

jet → − 	��1 − �� ,

�4.26�
d11

jet → 0, d22
jet → 0, d33

jet → 1, d12
jet → 0.

As a result, shear in a frame counter-rotating at a rate that is
smaller than the mean rotation due to the shear, drives 2D-1C
initially jetal turbulence to the same 1D-2C state of sheets
that was found to be the fixed state for initially vortical tur-
bulence �Eq. �4.25��. The same asymptotic states for the nor-
malized stresses and the structure dimensionality tensor com-
ponents have also been calculated by the 1D analysis with all
the dependence on the axis of the frame rotation �k3�0�.

d. Co-rotating, and counter-rotating at high rates: �
	0, and �
1. This case is when the frame is counter-
rotating at a rate that is smaller than the rotation rate associ-
ated with the mean shear itself. For these cases the argument
	��1−�� in the Bessel functions in �4.15�–�4.20� is an
imaginary number. In that case, we can change the argument
to a real number, making use of the relations

I0�2	��1 − ���� = J0�2	��� − 1��� �4.27�

and

I1�2	��1 − ���� = iJ1�2	��� − 1��� , �4.28�

where Jn are Bessel functions of the second kind, and i is the
imaginary unit. The Jn oscillate with decreasing amplitude as
their argument increases:

J0�z� �	2�

z
�cos�z − �/4� + ¯ �, for z → � ,

�4.29�

J1�z� �	2�

z
�cos�z − 3�/4� + ¯ � ,

and therefore at large total shear the normalized stresses and
the normalized structure dimensionality tensor components
attain the asymptotic values

r11
vor →

� − 1

2� − 1
, r22

vor →
�

2�2� − 1�
,

r33
vor →

�

2�2� − 1�
, r12

vor → 0, �4.30�

d11
vor → 0, d22

vor → 1/2, d33
vor → 1/2, d12

vor → 0.

As a result, mean shear in a co-rotating frame ��	0� or in a
counter-rotating frame at high rotation rates ��
1� drives
2D-2C initially vortical turbulence to a 2D-3C state with
axisymmetric structures and an equipartition of energy
within the plane normal to the axis of independence �axis of
the mean flow�. The final distribution of the energy along
�r11� and normal �r22,r33� to this axis depends on the value
of �.

When the initial turbulence consists of fluctuations along
the axis of independence, the initial jetal velocity spectrum
tensor is given by �4.8�. Using this initial spectrum, one finds
that again, because of the decreasing amplitude of the Bessel
functions for large arguments, for large total shear the nor-
malized tensor components approach the following limits:

r11
jet →

� − 1

2� − 1
, r22

jet →
�

2�2� − 1�
,

r33
jet →

�

2�2� − 1�
, r12

jet → 0, �4.31�

d11
jet → 0, d22

jet → 1/2, d33
jet → 1/2, d12

jet → 0.

As a result, mean shear drives 2D initially jetal turbulence to
the same 2D-3C state that was observed for initially 2D-2C
vortical turbulence. In terms of the morphology of the turbu-
lence, this state differs from the respective one found from
the 1D solution with k3�0 described in Sec. IV A 3. How-
ever, we may note the equality between the respective
asymptotic states for r11 as well as the similarity of the re-
sulting oscillating behavior for the turbulent kinetic energy.

3. k2=0

This case starts as 2D and migrates to 3D since the shear
forms �in real space� k2����=−k1�; thus, it is as close as
possible to the fully 3D initially isotropic case. For this
choice �more complicated compared to the previous ones�,
the system �2.6� yields for the evolution of û2,

d2û2

d�2 �1 + �2 cos2 
� +
dû2

d�
�4� cos2 
�

+ û2���� − 1�sin2 
 + 2 cos2 
� = 0, �4.32�

where we made use of cylindrical coordinates, substituting
k1=k0 cos 
 and k3=k0 sin 
. Combining Eqs. �2.6� and
�4.32�, we obtain the solutions for the Fourier transformed
velocity components, and the corresponding velocity spectra
in the case of an initially vortical turbulence become
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E11 = �1 − �2 cos2 
�� − 3��2F1
2�5/4 − a;5/4 + a;3/2;− �2 cos2 
�E11

0 + �25/12 − 4/3a2�2�4 cos4 


�F1
2�9/4 − a;9/4 + a;5/2;− �2 cos2 
�E11

0 − 2�2 cos2 
�1 − �2 cos2 
�� − 3��F1�9/4 − a;9/4 + a;5/2;− �2 cos2 
�

��25/12 − 4/3a2�F1�5/4 − a;5/4 + a;3/2;− �2 cos2 
�E11
0 ,

E22 = �2�2F1
2�5/4 − a;5/4 + a;3/2;− �2 cos2 
�E11

0 ,

�4.33�
E33 = �4 cos4 
 cot2 
�1 + �2 cos2 
�2�25/12 − 4/3a2�2F1

2�9/4 − a;9/4 + a;5/2;− �2 cos2 
�E11
0

+ �1 + ��2 sin2 
 + 3�2 cos2 
�2 cot2 
 F1
2�5/4 − a;5/4 + a;3/2;− �2 cos2 
�E11

0

− 2�2 cos2 
 cot2 
�1 + �2 cos2 
��1 + ��2 sin2 
 + 3�2 cos2 
��25/12 − 4/3a2�

�F1�9/4 − a;9/4 + a;5/2;− �2 cos2 
�F1�5/4 − a;5/4 + a;3/2;− �2 cos2 
�E11
0 ,

E12 = − ���1 − �2 cos2 
�� − 3��F1
2�5/4 − a;5/4 + a;3/2;− �2 cos2 
�E11

0 + ��3 cos2 
�1 + �2 cos2 
�

�F1�9/4 − a;9/4 + a;5/2;− �2 cos2 
��25/12 − 4/3a2�F1�5/4 − a;5/4 + a;3/2;− �2 cos2 
�E11
0 ,

where F1 is the hypergeometric function, with the parameter � given by

a = �	1 + 4��1 − ��tan2 
�/4. �4.34�

In the case of the initially jetal velocity distribution, the spectral solution is

TABLE I. Asymptotic limits for the normalized stresses rij and structure dimensionality tensor components dij, and the turbulent kinetic energy q2 /q0
2, at large

total shear, for the various initializations examined in the unstable regime �B
0�. For the 1D-2C cases a vortical initial state has been used, while for the
2D-3C, a superposition equally weighted between the vortical and the jetal part of the solution.

Initialization r11 r22 r33 r12 d11 d22 d33 d12 q2 /q0
2

1D-2C k1�0 0 0 1 0 0 1 0 0 1/2

k2�0 1/2 0 1/2 0 0 1 0 0 1

k3�0 1−� � 0 −B1/2 0 0 1 0 �exp�2�B1/2�
2D-3C k3=0 1/4 1/4 1/2 0 1/4 3/4 0 0 1

k1=0 1−� � 0 −B1/2 0 0 1 0 ��−1/2 exp�2�B1/2�
k2=0 1−� � 0 −B1/2 0 0 1 0 ��−3/2 exp�2�B1/2�

3D-3C isotropic 1−� � 0 −B1/2 0 0 1 0 ��−2 exp�2�B1/2�

TABLE II. As in Table I, but at the transitional regime, for �=0.

Initialization r11 r22 r33 r12 d11 d22 d33 d12 q2 /q0
2

1D-2C k1�0 0 0 1 0 0 1 0 0 1/2

k2�0 1/2 0 1/2 0 0 1 0 0 1

k3�0 1 0 0 0 0 0 1 0 ��2

2D-3C k3=0 1/4 1/4 1/2 0 1/4 3/4 0 0 1

k1=0 1 0 0 0 0 1/4 3/4 0 ��2

k2=0 1 0 0 0 0 �0.6 �0.4 0 ��

3D-3C isotropic 1 0 0 0 0 �0.7 �0.3 0 ��
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�2E11 = �� − 2�2�2 cos4 
 F1
2�3/4 − a;3/4 + a;1/2;− �2 cos2 
�E22

0 + �2�1 + �2 cos2 
�2cos4 
�9/4 − 4a2�2

�F1
2�7/4 − a;7/4 + a;3/2;− �2 cos2 
�E22

0 + 2�� − 2��2 cos4 
�1 + �2 cos2 
�F1�7/4 − a;7/4 + a;1/2;− �2 cos2 
�

��9/4 − 4a2�F1�3/4 − a;3/4 + a;3/2;− �2 cos2 
�E22
0 ,

�2E22 = �2F1
2�3/4 − a;3/4 + a;1/2;− �2 cos2 
�E22

0 ,

�4.35�
�2E33 = �2��� − 2�sin2 
 + 2�2cot2 
F1

2�3/4 − a;3/4 + a;1/2;− �2 cos2 
�E22
0 + �2�1 + �2 cos2 
�2cos4 


�cot2 
�9/4 − 4a2�2F1
2�7/4 − a;7/4 + a;3/2;− �2 cos2 
�E22

0 − 2�2��� − 2�sin2 
 + 2��1 + �2 cos2 
�cos2 


� cot2 
�9/4 − 4a2�F1�3/4 − a;3/4 + a;1/2;− �2 cos2 
�F1�7/4 − a;7/4 + a;3/2;− �2 cos2 
�E22
0 ,

�E12 = �� − 2�� cos2 
 F1
2�3/4 − a;3/4 + a;1/2;− �2 cos2 
�E22

0 + ��1 + �2 cos2 
�cos2 
�9/4 − 4a2�

�F1�7/4 − a;7/4 + a;3/2;− �2 cos2 
�F1�3/4 − a;3/4 + a;1/2;− �2 cos2 
�E22
0 .

Due to the complexity of the above relations, we perform
numerical integrations �presented in Sec. V� of the spectral
solutions �from 
=0 to ��, for the derivation of the stresses
and the structure dimensionality tensor components. How-
ever, we may recover some of the basic qualitative charac-
teristics regarding the evolution of the turbulent kinetic en-
ergy, through a rough investigation of the above defined
spectral solutions. In the unstable regime, when 0	�	1, a
is a real function of 
 and, as a result, the stresses show an
exponential growth with time, which agrees with the findings
from the 2D initialization with k1=0 and the 1D initialization
with k3�0. For values of � less than 0 or bigger than 1,

corresponding to the stable cases, a is complex, and the
stresses show a decreasing behavior with diminishing oscil-
lations. The decrease of the energy in this regime cannot be
described by the other two initializations, where only an os-
cillating behavior is present, as discussed.

For the cases when �=0 or 1, a equals 1 /4, leading into
a linear growth of the kinetic energy, as it will be shown. For
the specific case when the frame counter-rotates ��=1�, a
simple analytical solution in real space can be derived. For
this specific choice of �=1, and for an initially vortical tur-
bulence the integration of the spectral solution �4.33� is sim-
plified, and we derive final expressions for the Rij:

TABLE III. As in Table I, but at the transitional regime, for �=1.

Initialization r11 r22 r33 r12 d11 d22 d33 d12 q2 /q0
2

1D-2C k1�0 0 0 1 0 0 1 0 0 1/2

k2�0 1/2 0 1/2 0 0 1 0 0 1

k3�0 0 1 0 0 0 0 1 0 ��2

2D-3C k3=0 1/4 1/4 1/2 0 1/4 3/4 0 0 1

k1=0 0 1/4 3/4 0 0 3/4 1/4 0 ��2

k2=0 0 1/2 1/2 0 0 1/2 1/2 0 ��

3D-3C isotropic 0 1/2 1/2 0 0 1/2 1/2 0 ��

TABLE IV. As in Table I, but at the stable regime �B	0�.

Initialization r11 r22 r33 r12 d11 d22 d33 d12 q2 /q0
2

1D-2C k1�0 0 0 1 0 0 1 0 0 1/2

k2�0 1/2 0 1/2 0 0 1 0 0 1

k3�0 ��−1�� �2�−1� �� �2�−1� 0 0 0 0 1 0 �4B−1�� 4B

2D-3C k3=0 1/4 1/4 1/2 0 1/4 3/4 0 0 1

k1=0 ��−1�� �2�−1� �� �4�−2� �� �4�−2� 0 0 1/2 1/2 0 �4B−1�� 4B

k2=0 0 0 1 0 0 1 0 0 0

3D-3C isotropic 0 0 1 0 0 1 0 0 0
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R11
vor�� = 1�

q0
2 =

1

2	1 + �2
,

R22
vor�� = 1�

q0
2 =

�2

2	1 + �2
,

�4.36�
R33

vor�� = 1�
q0

2 =
1 + �2

2	1 + �2
,

R12
vor�� = 1�

q0
2 = −

�

2	1 + �2
.

The structure dimensionality tensor components are found to
be equal to the respective stress components at any time

Dij
vor�� = 1,�� = Rij

vor�� = 1,�� . �4.37�

Such an equality has also been noted by Akylas et al.21 for
the analytical solution of the 3D initially isotropic case as
well. Another similarity with the initially isotropic 3D solu-
tion is the linear evolution of the turbulent kinetic energy.
None of the previously examined 1D or 2D initialized solu-
tions matches this linearity. From �4.36� and �4.37�, we may

FIG. 4. Evolution of the normalized
stresses �left� and the structure dimen-
sionality �right� components: 11 �con-
tinuous�, 22 �short-dashed�, 33 �long-
dashed�, and 12 �dot-dashed� for �
=0.125 �a�, 0.25 �b�, 0.5 �c�, 0.75 �d�,
and 0.875 �e�, for an initially isotropic
3D turbulence.
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note that the vortical solution starts as 2D-2C, evolves as
3D-3C and it is driven, asymptotically, to a 2D-2C final state
with r22=d22→0.5, r33=d33→0.5, forming vortical axisym-
metric eddies aligned with the axis of the mean flow �x1�.

For the choice of a jetal initial turbulence, the integration
of the spectral solution �4.35� yields

R11
jet�� = 1� = �2 +

1

�1 + �2�3/2 −
3

	1 + �2� q0
2

2�2 ,

R22
jet�� = 1� =

2 + �2

2�1 + �2�3/2q0
2,

�4.38�

R33
jet�� = 1� =

2 + �2 − 2	1 + �2

2�2	1 + �2
q0

2,

R12
jet�� = 1� =

�

2�1 + �2�3/2q0
2.

As a result, the 3C solution, obtained through the superposi-
tion of the vortical and the jetal cases, is dominated by the
vortical solution.

On the other hand, at the transitional limit with �=0, the
solution is driven by the jetal initialization, since the vortical
initialization does not produce any stress evolution. In this
jetal case, by taking the limit of E12��=0� in Eqs. �4.35� and
integrating over 
, the shear stress becomes

R12
jet�� = 0�

q0
2 =

�

2��2 + 1�3/2

−
1

2�
�

0

2� sin2 
/cos 


1 + �2 cos2 

arctan�� cos 
�d
 ,

�4.39�

where the evolution of R12
jet��=0� for large � is determined

by the value of the integral at the right-hand side of �4.39�.
Indeed, for large values of �, the limit of this integral is

R12
jet�� = 0,� � � → −

2

�
�

0

� arctan�
�
x�1 + 
2�

d
 = − ln 2, �4.40�

which equals the respective asymptotic value estimated by
Rogers20 for the initially isotropic 3D case.

V. COMPARISONS BETWEEN THE VARIOUS
NONISOTROPIC INITIALIZATIONS
AND THE 3D INITIALLY ISOTROPIC CASE

As shown in the analysis presented in Sec. IV, three out
of the six alternative nonisotropic initializations that have
been examined for the solution of the system �2.6�, resulted
in a dependence on the dimensionless rotation rate �; the
1D-2C initialization with k3�0, the 2D-3C with k1=0 and
the 2D-3C initialization with k2=0. Clearly, for all the above
solutions the dependence on the axis of the frame rotation x3

�meaning that k3�0� is present. The other �k3=0� is the ma-
terial indifferent case. Due to profound qualitative similari-
ties between the behavior of the first two choices �1D with
k3�0, 2D with k1=0� as discussed, in this section we focus
on the comparison of only the last two 2D-3C initializations
�k1=0, k2=0� with the initially isotropic 3D-3C solution. For
the case with k1=0, the calculations of the one-point statis-
tics have been done analytically through the respective rela-
tions derived in Sec. IV B 2, while when k2=0, we use the
numerical integrations of the relevant spectral solutions de-
rived in Sec. IV B 3. Finally, the results for the initially iso-
tropic 3D initialization have been calculated through the
PRM �Kassinos and Reynolds23� exact numerical solution.
The comparisons refer to the dimensionless stresses rij,
structure dimensionality tensor components dij, and the evo-
lution of the turbulent kinetic energy q2/2, and they are pre-
sented for the following ranges of the values of �:

• 0	�	1, which determines the unstable regime where the
energy grows exponentially with time,

• �=0 and �=1, the transitional regime where the energy
growth shifts from exponential to algebraic, and

• �
1 and �	0, the stable regime, where the energy
stabilizes.

The asymptotic limits for large total shear of all the com-
pared parameters are summarized in Tables I–IV.

FIG. 5. Asymptotic values of the normalized stresses 11 �—; �; ��, 22
�- - -; �; ��, 12 �- - - -; �; �� and the structure dimensionality component
33 �- · -; �; �� calculated analytically for the case with k1=0 �lines� and at
�=50, for the initially isotropic 3D case �solid symbols� and the 2D initial-
ization with k2=0 �open symbols�.

FIG. 6. Evolution of the turbulent kinetic energy ratio Rii��� /Rii�1−��,
derived from the 3D-PRM numerical calculations for �=0.0675 �—�, 0.125
�- - -�, 0.25 �- -�, and 0.375 �-·-�.
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A. Unstable regime

From the investigation of the 3D PRM results, we ob-
serve �Fig. 4� that, in all cases characterized by a positive
Bradshaw number19,29 B=��1−��, meaning 0	�	1, the
3D-3C initially isotropic turbulence is driven quite fast to the
1D-2C asymptotic state: d33→1, r33→0. The above finite
1D asymptotic behavior makes it possible to represent this
regime quite accurately, using the simplified fully 2D analy-
sis of the problem with the k1=0 state �independent of x1�.
Indeed, for values of � between 0 and 1, the qualitative
agreement between the analytical results of this specific 2D
approach and the 3D-3C exact PRM numerical solutions is in
general accurate. More specifically, in terms of the normal-
ized stresses and the structure dimensionality components,
the 2D analytical solution derived in Sec. IV B 2 and the 3D
PRM exact numerical solution collapse quickly to the same
asymptotic state �Eqs. �4.25� and �4.26��. The asymptotic
limits for the 2D case with k1=0 can be calculated analyti-
cally through Eqs. �4.25� and �4.26�, for vortical and jetal
initializations, respectively. The results for both initializa-
tions are identical and are summarized in Table I. As shown
in Fig. 5, the same limits are also reached by both the 3D
isotropic case �initially� and the 2D initialization with k2=0.

In this unstable regime, the energy Rii evolves exponen-
tially with time, growing faster as � approaches 0.5
�Brethouwer4�. The solutions for the isotropic 3D initializa-
tion showed that the evolution histories for small total shear,
depend not only on B=��1−�� but also on �. That is, we
obtain different histories between cases with identical B
=��1−�� and different � �pointed out also by Salhi19�, with
Rii�� ,�� being larger than Rii�1−� ,�� for 0	�	0.5. How-
ever, we found that there exists a clear trend for a matching
asymptotic behavior; i.e., Rii�1−� ,��1�→Rii�� ,��1�, as
shown in Fig. 6. From the investigation of the numerical
solution of the initially 2D case, with k2=0, we can show
that there exists a similar matching asymptotic behavior in
the evolution of Rii�� ,�� and Rii�1−� ,��, only when a su-
perposition with equally weighted �50%-50%� vortical and
jetal initializations is used �Fig. 7�. This behavior is attrib-
uted to the fact that, besides strong deviations at early times,
the vortical part of the solution for Rii�� ,�� matches gradu-
ally the jetal part of the solution for Rii�1−� ,��, and vice
versa; the jetal part of the solution for Rii�� ,�� matches
gradually the vortical part of the solution for Rii�1−� ,�� as
shown in Figs. 8 and 9, respectively. Even more, from the 2D
approach with k1=0 it is shown in Eqs. �4.16� and �4.19� that
the vortical/jetal part of the solution for Rii�� ,�� exactly
matches the jetal/vortical part of the solution for Rii�1
−� ,�� at any time. As a result, a superposition weighted

FIG. 7. Evolution of the turbulent kinetic energy ratio Rii��� /Rii�1−��, for
the initialization with k2=0, calculated with superposition between equally
divided vortical and jetal initial spectra for �=0.125 �short-dashed� and 0.25
�long-dashed�.

FIG. 8. Evolution of the turbulent kinetic energy ratio of Rii��� for a vortical
initialization divided by Rii�1−�� from a jetal initialization, calculated from
the initially 2D case with k2=0, for �=0.125 �short-dashed� and 0.25
�long-dashed�.

FIG. 9. As in Fig. 6, but with Rii��� for a jetal initialization and Rii�1−�� for
a vortical initialization.

FIG. 10. Energy growth for �=0.125 �long-dashed�, 0.25 �short-dashed�,
and 0.5 �continuous� for the 3D isotropic �black�, the 2D initializations with
k2=0 �light gray� and k1=0 �dark gray�.
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again equally between the 2D jetal and vortical initializa-
tions, results in exactly the same turbulent kinetic energy
growth, for cases characterized by the same B. In this case,
the energy growth in the 2D approach for k1=0, is calculated
analytically by combining Eqs. �4.16� and �4.19� as

Rnn��,k1 = 0�
q0

2 =
I0�2	��1 − ���� − �2� − 1�2

4��1 − ��
, �5.1�

and reaches the following asymptotic form at large values of
total shear

Rnn�� � 1,k1 = 0�
q0

2 →
exp�2�B1/2�
8	��1/2B5/4

, �5.2�

depending only on the Bradshaw number B=��1−�� and �.
Using a simplified 3D analysis, neglecting the pressure
strain-correlations, Brethouwer4 derived the dominating ex-
ponential energy growth �exp�2�B1/2�. As noticed earlier in
this study, the same exponential asymptotic behavior is
found even if we work out the 1D solution for k1=k2=0
�Sec. IV A 1�.

In Fig. 10 we present a comparison, in terms of the en-
ergy growth, between the three different initializations exam-
ined. From this figure it is apparent that, as already noticed,
for any of the presented initializations, the rate of the energy
growth increases as � approaches 0.5, which results in the
maximization of the exponential term exp�2�B1/2�. However,
we may notice the inequality between the turbulent kinetic
energy calculated from the three different initializations:

Rii�� ,� ,k1=0�
Rii�� ,� ,k2=0�
Rii�� ,� ,3D�. This in-
equality is consistent with the following estimates of the
asymptotic turbulent kinetic energy growth in the last two
initializations.

In the case of k2=0, the investigation of the spectral
solution showed that

Rnn�� � 1,k2 = 0�
q0

2 →
exp�2�B1/2�
C1�3/2B5/4 , �5.3�

with C1�8.1. For the initially isotropic 3D turbulence we
have concluded, using the numerical results, that the finite
asymptotic state of the energy evolution is reached at larger
times ���100�, when it becomes

Rnn�� � 1�
q0

2 →
exp�2�B1/2�

C2�2B3/2 , �5.4�

with C2�4.6.

B. Transitional regime

The transitional regime is characterized by B=0, which
means that � is either 0 �no rotation� or 1 �counter-rotating
frame�. As mentioned, these two cases have been studied
analytically for an initially isotropic 3D state, by Rogers20

and Akylas et al.,21 respectively. Starting from the 2D initial-
ization with k1=0, we show that it drives turbulence to a
different asymptotic behavior compared to the 3D isotropic
case. The main difference lies into the different estimation of
the energy growth as Rnn���=O��2�, which does not agree
with the linear behavior of the 3D initially isotropic solution,

FIG. 11. Turbulent kinetic energy growth for �=0 and for 3D isotropic
�solid� and 2D initializations with k2=0 �only the jetal part of the solution�
�short-dashed� and k1=0 �long-dashed�.

FIG. 12. As in Fig. 11, but for �=1, and using a 50%-50% superposition for
both the 2D initializations.

FIG. 13. Evolution of the normalized
stress and the normalized structure di-
mensionality components 11 �continu-
ous�, 22 �short-dashed�, 33 �long-
dashed�, and 12 �dot-dashed� for �=0
and for the 3D isotropic initialization
�thin black� and the 2D initialization
with k2=0 �only the jetal part of the
solution� �bold gray�.
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as shown in Figs. 11 and 12. Also the asymptotic states for
the normalized stresses and structure dimensionality tensor
components �Eqs. �4.22� and �4.24��, summarized in Tables
II and III, do not match those from the 3D solution �with the
only exception being the asymptotic state for the normalized
stress component r11→1, for �=0�.

In contrast to the k1=0 initialization, when k2=0 the
calculations are highly comparable with the results of the
initially isotropic 3D case, in terms of the turbulent kinetic
energy �Figs. 11 and 12� and the normalized stresses and
structure dimensionality components �Figs. 13 and 14�. Es-
pecially for �=1, there is an impressive agreement between
the two solutions. They both converge to the same vortical
2D-2C axisymmetric asymptotic state with d11=r11→0, d22

=r22→1/2 and d33=r33→1/2. The fact that this state is
reached relatively quickly ���5� would seem to suggest
that the simplified analysis with k1=0 would provide a good
approximation to the exact evolution of the tensor compo-
nents. However, as noted previously, such an approximation
fails to capture the correct turbulent kinetic energy growth,
suggesting that for the transitional cases the 3D character of
the turbulence at early times plays a key role in determining
the evolution at later times �this also holds true for the case
without any frame rotation�.

C. Stable regime

The stable cases are characterized by B	0 �either �
	0 or �
1�. Figures 15 show that for negative values of �,
the 3D-3C calculations for the evolution of the turbulent ki-
netic energy lie between the respective ones from the 2D
cases, with k1=0 �larger� and with k2=0 �smaller�. More spe-
cifically, as shown analytically in Sec. IV B 2, when k1=0
the energy level approaches a fixed state with decreasing
oscillations with a period proportional to 2	−B �Eqs. �4.16�
and �4.19��. This solution fails to capture the clear diminish-
ing behavior of the kinetic energy found with the 3D isotro-
pic initialization. On the other hand, when k2=0 the energy
diminishes, although remaining smaller compared to the
fully 3D case. This difference can be attributed to the clear
increase of the energy at short times, which exists in the
initially isotropic case, but it is not as intense for the k2=0
initialization. The last remark is due mainly to the fact that in
this study we have used a uniform 50%-50% superposition
between the jetal and the vortical part for the 2D solution.
For �	0, the jetal part of this specific 2D solution shows a
significant initial increase in the turbulent kinetic energy,
while the vortical part decreases monotonically �not shown
here�. As a result, different choices for the weights of the

FIG. 14. As in Fig. 13, but for �=1.

FIG. 15. Evolution of the turbulent kinetic energy for
the stable cases with �=−0.5 �a�, −1.0 �b�, −1.5 �c�, and
−2.0 �d�. The curves correspond to three different initial
states examined: �continuous� isotropic 3D-3C, �long-
dashed� 2D-3C with k1=0 and �short-dashed� 2D-3C
with k2=0. In the 2D �initially� cases, a superposition of
equally weighted vortical and jetal initializations has
been used.
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superposition �dependent, however, on the value of �� can
improve this feature. However, the investigation of this fea-
ture is beyond the general scope of this study and here we
use an equally divided partition. In any case, the deviation
between the 2D initialization and the 3D isotropic solution
seems to shrink, in general, as the stability is enhanced �the
absolute value of � is increased�. Similar results can be
drawn also for the cases with positive � �Fig. 16�, with the

only exception that for this direction of the frame rotation the
initial increase of the energy is due to the vortical part of the
solution.

Focusing in the 3D initialization, we may notice �Fig.
17� that the cases with �
1 result in a lower energy com-
pared to the cases with �	0, for the same value of B. This
difference exhibits a decreasing trend as the stability is in-
creased. A similar picture can be drawn also for the results of

FIG. 16. As in Fig. 15, but for the
stable cases with �=1.5 �a�, 2.0 �b�,
2.5 �c� and 3.0 �d�.

FIG. 17. Comparisons of the evolution
of the turbulent kinetic energy starting
with an isotropic 3D-3C state, for
stable cases with the same B and for
�=1.5/−0.5 �a�, 2.0/−1.0 �b�, 2.5/
−1.5 �c�, and 3.0/−2.0 �d�. The con-
tinuous curves correspond to negative
values of � and the dashed lines to
positive.
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the solution with k2=0 �not shown here�. In contrast to the
above mentioned asymmetry, when k1=0 the cases being
characterized by an equal B show exactly the same energy
evolution for a 50%-50% superposition between the vortical
and the jetal part of this specific solution. This can be ex-
plained by the fact that for this particular initialization, the
vortical/jetal part of the solution for Rii�� ,�� equals the jetal/
vortical part of the solution for Rii�1−� ,�� at any time, as
shown in the respective Eqs. �4.16� and �4.19�.

From the above discussion, it follows that the results of
the 2D initialization with k2=0 �which generates a 3D state�
are as close as possible to the ones from the 3D isotropic
initialization. This may also be concluded by the agreement
in the evolutions of the dimensionless stress and structure
dimensionality components as shown in Fig. 18. From the
same figure it becomes clear that for the stable cases the
turbulence keeps a 3C-3D character for much longer times
compared to the unstable cases. Thus, it is not surprising that
for the stable regime the initial dependence on the axis of the
mean flow, i.e., x1, is also important �along with the depen-
dence on the axis of the frame rotation, i.e., x3� for the evo-
lution of the turbulence with time. The final state for the
stable cases is approached at very large times, with the tur-
bulence evolving very slowly towards an 1D-1C with r33

→1, d22→1. That is, formation of sheets perpendicular to
the axis of the mean gradient with turbulent velocity fluctua-
tions around the axis of the frame rotation. However, at those
large times, the turbulent kinetic energy almost vanishes.

VI. CONCLUSIONS

In this study we examined the effect of the initial condi-
tions of the turbulence for rapidly distorted shear flow in a
rotating frame. Analytical solutions have been derived for the

evolution of the Reynolds stresses and the structure dimen-
sionality tensor components for three one-dimensional and
three two-dimensional initializations. Consistent with the
material indifference of 2D turbulence, we found that when
the turbulence is initially independent on the axis of the
frame rotation �k3=0�, the solutions are not sensitive to the
dimensionless rotation rate �. In the more important general
case with k3�0, the solutions are separated in four classes,
according to the value of �, with three corresponding energy
evolution regimes: unstable, stable, or transitional.

In the unstable regime, the solutions exhibit a similar
asymptotic behavior in terms of the evolution of the normal-
ized stresses and the structure dimensionality components,
approaching quickly a 2C-1D final state, with all the spatial
dependence being on the axis of the frame rotation. The tur-
bulent kinetic energy grows exponentially with time for all
cases, although clearly faster when k1=0. When k2=0, the
calculated energy growth was found to be much closer to the
initially isotropic 3D case. Small deviations, in the energy
growth, between cases characterized by a different dimen-
sionless rotation ratio �, but the same parameter B=��1
−��, were noticed for both the fully 3D and the initially 2D
�with k2=0� solutions, while they were absent when k1=0.
However, the relative deviations decrease with time and the
asymptotic states, for large total shear, depend only on the
value of parameter B. In the transitional regime the 2D ini-
tialization with k1=0 drives turbulence to a completely dif-
ferent asymptotic behavior compared to the 3D isotropic
case. The main difference lies into the different estimation of
the energy growth, as Rnn�����2, which does not agree with
the linear behavior of the 3D initially isotropic solution. In
contrast to that, when the initial dependence on the axis of

FIG. 18. Evolution of the normalized stresses �left� and
the structure dimensionality �right� components: 11
�continuous�, 22 �short-dashed�, 33 �long-dashed�, and
12 �dotted dashed� for �=2.0 �a� and −1.0 �b�. The
black lines correspond to the solution for k2=0 and the
gray lines to the PRM exact numerical solution for an
initially isotropic 3D condition.

025102-17 Rapid shear of initially anisotropic turbulence Phys. Fluids 19, 025102 �2007�

Downloaded 01 May 2011 to 82.116.222.1. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



the mean flow is present, i.e., k1�0, k3�0, and k2=0, the
calculations are highly comparable with the results for the
initially isotropic 3D case, in terms of both the turbulent
kinetic energy evolution and the dimensionless stress and
structure dimensionality components.

For the stable regime it has been shown that the 3D-3C
character of the turbulence at early times is crucial for the
evolution of the kinetic energy, unlike in the unstable cases.
The initializations with k1=0 deviate from the initially iso-
tropic case, failing to capture the decay of the turbulent ki-
netic energy at large times. On the other hand, both the 3D
isotropic and the 2D initialization with k2=0, which migrates
to 3D, cause a diminishing behavior of turbulent kinetic en-
ergy �TKE� at large enough times. The similarity of the last
two solutions in terms of the normalized stresses and the
structure dimensionality components is remarkable.
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