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We apply inviscid rapid distortion theory to the limiting hyperbolic case of turbulent plain strain
flow in a rotating frame and investigate the dependence of the evolution of the turbulent kinetic
energy on the frame rotation rate. We derive an analytical two-dimensional solution that, unlike
previous oversimplified pressureless analyses, allows for an accurate approximation of the
three-dimensional initially isotropic problem. From the analytical solutions, we determine the
correct stability criterion for the evolution of the turbulent kinetic energy in this flow. Also, we
calculate the asymptotic states of the turbulence, in terms of the normalized Reynolds stresses and
structure dimensionality tensor components, which coincide with the exact three-dimensional
numerical results. © 2007 American Institute of Physics. �DOI: 10.1063/1.2750683�

I. INTRODUCTION

The effects of system rotation on quadratic flows have
received considerable attention during the past decade be-
cause of their relevance to important technological and geo-
physical problems. Quadratic flows are a special class of
two-dimensional flows with uniform mean velocity gradients
on a reference frame. They are constituted by different com-
binations of mean strain and mean flow rotation. Depending
on their relative magnitude we may have hyperbolic flows,
when rotation is smaller than strain, or elliptic flows, when
rotation exceeds strain. The separating case, when they equal
each other, is the well known shear case �parallel stream-
lines�.

The presence of rotation of the reference frame can act
to either stabilize or destabilize the turbulence, depending on
the ratio of the frame rotation rate to that of the mean defor-
mation rate. Numerical studies �see, for example, Refs. 1 and
2� have clearly shown the dependence of the evolution of the
turbulent kinetic energy �TKE� on that ratio. However, im-
portant details, such as long-time asymptotic states, and the
transition limits from the stable to the unstable regimes for a
general quadratic flow remain unclear.

Apart from numerical experiments, considerable insight
into the evolution of the TKE can be gained through rapid
distortion theory �RDT�. In the framework of RDT, linear-
ized equations of motion are used to explain some of the
significant kinematical and dynamical responses of turbu-
lence to imposed deformation. The theory is valid for rapidly
changing turbulent flows, when the distortion is applied for a
time that is short compared to the “turnover” time scale of
the energy-containing eddies; that is the initial response to a
sudden change in the mean deformation. Furthermore, RDT
is also a good approximation, in cases in which the ratio of

the mean deformation time scale over the eddy “turnover”
time scale is much smaller than 1,3,4 which ensures that the
nonlinear terms in the governing turbulence equations in-
volving products of fluctuation quantities are still negligible;
then the turbulence is affected mostly by the mean flow and
not by the turbulence itself. Thus, under RDT the nonlinear
effects resulting from turbulence-turbulence interactions are
neglected in the governing equations.5–7 Simple cases of
rapid deformation often admit closed-form solutions for in-
dividual Fourier coefficients. The solutions to the linearized
equations can be used to calculate the characteristics of the
development of the energy spectrum tensor, two-point corre-
lations, and other turbulence statistic quantities of interest.

While shear flows in rotating frames have been a popular
case study of both numerical and analytical works, the gen-
eralized quadratic flow has not received as much attention. A
nice work by Salhi et al.8 investigated the effect of the frame
rotation on the stability of the turbulence in the general case,
and they introduced a modified Bradshaw9 number in order
to characterize the stability limits. The specific criterion has
been derived based on a pressureless analysis,10 where the
pressure fluctuations were omitted from the governing equa-
tions. The authors concluded that the modified criterion ap-
plies well if the total rotation vanishes, that is, when the
reference frame counter-rotates at a rate that cancels the
mean flow rotation. A simple case in which this is not appli-
cable, as will be shown here, is the plane strain case �Fig. 1�.
This is the limiting hyperbolic case, when there is no mean
flow rotation �this can also be understood as the limit of a
very large ratio of mean strain to mean rotation�.

In order to contribute to the understanding of this case,
in the present study we use RDT to investigate the evolution
of the turbulence in plane strain flow, subject to frame rota-
tion. This study refers especially to the stability limits for the
evolution of the TKE and extends to the development of the
Reynolds stresses Rij=uiuj and the structure dimensionality
tensor Dij.

11 The combined use of these tensors allows one to
distinguish between the componentality of the turbulence
�described by Rij� and its dimensionality, which has to do
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with the morphology of the turbulence eddies, and is de-
scribed by Dij. For example, if D11=0, then the turbulence is
independent of the x1 axis, that is, it consists of long struc-
tures aligned with the x1 direction.

Apart from the general interest in understanding the ef-
fect of plane strain on turbulent flows, a strong motivation
for this study arose from our efforts to develop an algebraic
structure-based turbulence model, which has been success-
fully used, so far, to compute the characteristics of rotating
turbulent channel and boundary layer flow.12 The model uses
RDT asymptotic limits as targets or guidelines for determin-
ing the anisotropy of the Reynolds stress and structure di-
mensionality tensors under strong deformations, aiming to
improve model dependability and reliability. While the RDT
asymptotics for the shear case are known �see, for example,
Akylas et al.13�, the respective information for the plane
strain case is introduced in this study.

The present paper is organized as follows. In Sec. II, we
present the basic linearized RDT equations for the general
three-dimensional �3D� and three-componental �3C� case of
plane strain in a rotating frame. In Sec. III, we investigate a
pressureless solution and we show its inability to describe
accurately the stability limits of the initially 3D-3C isotropic
case. In Sec. IV, we solve analytically an alternative 2D-3C
case �referring to the approximated 2D character of the tur-
bulent eddies�, which maintains the pressure effects, and in
Sec. V we calculate asymptotic expressions for the stresses
and the TKE evolution. The 2D �but 3C� results regarding
the TKE, the stresses, and the structure dimensionality tensor
components are compared, in Sec. VI, against the 3D nu-
merical solution obtained with the particle representation
model �PRM�, which has been developed by Kassinos and
Reynolds,14 and they show remarkable agreement.

II. LINEAR EQUATIONS

In the case of plane strain with frame rotation �Fig. 1�,
the mean strain rate, mean rotation rate �zero�, and frame
rotation rate tensors are

Sij
* = �� 0 0

0 − � 0

0 0 0
�, �ij = �0 0 0

0 0 0

0 0 0
� ,

�2.1�

�ij
f = � 0 − � f 0

� f 0 0

0 0 0
� .

For the general three-dimensional and three-componental
�3D-3C� case, the inviscid linear RDT equations for the fluc-
tuating velocity components become

�ui

�t
+ �x1

�ui

�x1
− �x2

�ui

�x2

= − �ui��i1 − �i2� −
1

�

�p

�xi
+ 2�ij3� fuj . �2.2�

Using the Rogallo15 transformation, we set

�1 = x1e−�t, �2 = x2e�t, �3 = x3, � = t , �2.3�

and �2.2� transforms to

�u1

��
= − �u1 −

1

�

�p

��1
e−�t + 2� fu2,

�u2

��
= �u2 −

1

�

�p

��2
e�t − 2� fu1, �2.4�

�u3

��
= −

1

�

�p

��3
.

Applying the Fourier transformation to �2.4�, the coefficients
�denoted with ∧� in the spectral space evolve as

� û1

��
= − �û1 +

ip̂

�
k1e−�t + 2� fû2,

� û2

��
= �û2 +

ip̂

�
k2e�t − 2� fû1, �2.5�

� û3

��
=

ip̂

�
k3.

Substituting the Fourier transformed continuity equation,
k1e−�û1+k2e�û2+k3û3=0, we can solve for the pressure in
�2.5�,

ip̂

�
=

2�k1e−�tû1 − 2�k2e�tû2 − k1e−�t2� fû2 + k2e�t2� fû1

�k1
2e−2�t + k2

2e2�t + k3
2�

, �2.6�

and by substituting �2.6� into the system �2.5�, this simplifies to

FIG. 1. Schematic illustration of the plane strain flow in a rotating frame
that is examined here.
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� û1

��
=

�k1
2e−2� − k2

2e2� − k3
2 + 	k1k2�û1 + �	k2

2e2� + 	k3
2 − 2k1k2�û2

�k1
2e−2� + k2

2e2� + k3
2�

,

� û2

��
=

�k1
2e−2� − k2

2e2� + k3
2 − k1k2	�û2 − �	k1

2e−2� + 	k3
2 − 2k1k2�û1

�k1
2e−2� + k2

2e2� + k3
2�

, �2.7�

� û3

��
= k3

2k1e−�û1 − 2k2e�û2 − k1e−�	û2 + k2e�	û1

�k1
2e−2� + k2

2e2� + k3
2�

,

where �=�� is the total strain applied, and 	=2� f /� is the
dimensionless frame rotation rate. Solutions of this system in
terms of the spectrum components Eij� ûiûj

* for the specific
case without frame rotation �	=0� have been reported by
Lagnado et al.16 and Lee et al.17 Such solutions were used
for the approximation of the Reynolds stresses, Rij=uiuj

=���kEijd
3k at large total strain, which in this case reach the

following unstable asymptotic behavior �this has also been
reported much earlier by Townsend5 in his equations
3.11.10�:

R11/q0
2 � �e−�, R22/q0

2 � e�, R33/q0
2 � e�, �2.8�

where q0
2 is twice the initial kinetic energy. However, a gen-

eral analytical solution of the 3D system in the case of frame
rotation is not known as of yet. Fortunately, we may draw
some of the main characteristics of the 3D solution by car-
rying out simplified 1D or 2D analyses, as will be shown.
More specifically, the 3D system �2.7� can be simplified by
setting specific components of the wave-number vector equal
to 0. In such cases, it is possible to derive analytical solutions
for the evolution of the spectra of the turbulence, as shown in
Secs. III and IV. By integrating the spectra over all the wave
numbers, we obtain solutions in physical space, for the de-
velopment of the stress components and the structure dimen-
sionality tensor �see Refs. 11 and 13�,

Dij =	 	 	
k

Enn�k�
kikj

k2 d3k �2.9�

and its normalized form

dij = Dij/Dkk = Dij/Rkk = Dij/q
2, where q2 = Rii = 2 
 TKE.

�2.10�

III. PRESSURELESS ANALYSIS „k3Å0…

As mentioned, the 3D system �2.7� can be simplified
using 1D or 2D initializations �setting specific wave numbers
to 0� making it amenable to analytical solutions. For in-
stance, setting k1=0 means that the turbulence is initially
composed of eddies that are elongated in the direction of the
mean flow �x1 axis�. For the simpler 1D cases, we may al-
ternatively use three different 1D �for example k2=k3=0�
initializations. A simple pressureless approach is quite often
used2,8 in order to help to identify some of the main charac-
teristics regarding the behavior of the RDT equations. Ne-

glecting the pressure terms from the RDT equations �2.2� is
equivalent, for the specific case at hand, to a 1D-2C analysis
of the problem, with k1=k2=0, k3�0. This can be easily
understood since, in the 1D case, where there is only depen-
dence on the x3 direction, Eqs. �2.2� simplify to

�u1/�� = − u1 + 	u2, � u2/�� = u2 − 	u1, � u3/�� = 0.

�3.1�

The same equation for the Fourier transformed velocity com-
ponents can also be obtained by simply setting k1=k2=0 in
�2.7�. In the above pressureless formulation, the solution for
the evolution of the velocity components yields

u1 = u1
0 cosh��
1 − 	2�

+ �	u2
0 − u1

0�sinh��
1 − 	2�/
1 − 	2,

u2 = u2
0 cosh��
1 − 	2�

− �	u1
0 − u2

0�sinh��
1 − 	2�/
1 − 	2, �3.2�

u3 = 0,

which depends on the dimensionless rotation of the frame,
resulting in an exponential growth of the TKE with time, for
	2�1. For values of 	2 larger than 1, the stresses oscillate
and the TKE stabilizes, around a constant value. The same
limit for the stabilization of the TKE in the case of plane
strain with frame rotation has been reported by Salhi et al.8

based on their pressureless analysis of a generalized qua-
dratic flow. More specifically, their modified Bradshaw num-
ber, Br, which characterizes the stability of the TKE, reduces
for the plane strain flow to Br=1−	2 �see also Godeferd18�.
However, the above limit for the stabilization of the TKE
does not match the one shown in Fig. 3 in the exact solution
�using the PRM representation� of the initially homogeneous
3D case. The 3D numerical solution reveals that the TKE
approaches a stable behavior for values of 	 between 0.85
and 0.90. This implies that the role of the pressure fluctua-
tions is crucial for the evolution of the turbulence, especially
through the rapidly evolving wave-vector component k2e� in
�2.6� and �2.7�. This inability of the pressureless formulation
to identify the stability limits in general quadratic flows cor-
rectly, compared to the “true” linear analysis �where the pres-
sure terms are present�, has been pointed out by Salhi.8 In the
following, we examine the plane strain flow using a 2D ap-
proach, which maintains the pressure fluctuations, resulting
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in an accurate characterization of the stability dependence on
the rotation of the frame.

IV. TWO-DIMENSIONAL ANALYTICAL SOLUTION
FOR k1=0

By setting only k1=0, we introduce a more appropriate
2D �but 3C� case, where the turbulence is independent of the
x1 direction. We could also set k2=0 or k3=0, instead of k1

=0, forcing the turbulence to be independent of the x2 or x3

directions, respectively. However, we have found that the
choice k1=0 yields a subsequent evolution of the turbulence
statistics that is much closer to the one obtained using the 3D
isotropic initialization. This can be explained by the fact that
in the 3D equations �2.7�, the dependence on x1 vanishes
rapidly, since the wave-number component k1 is multiplied
by e−�. Thus, the general 3D case evolves fast toward a 2D
behavior with a vanishing normalized dimensionality com-
ponent d11=D11/q2→0, as illustrated in Fig. 4 for several
values of 	. For the specific choice of k1=0, the 3D system
�2.7� simplifies to

� û1

��
= − û1 + 	û2,

� û2

��
=

k3
2û2 − k2

2e2�û2 − k3
2	û1

k2
2e2� + k3

2 , �4.1�

� û3

��
=

− 2k3k2e�û2 + k3k2e�	û1

k2
2e2� + k3

2 .

The solution of �4.1� is a complicated task, especially regard-
ing the subsequent integrations for the calculation of the one-
point structure tensors, as it is not possible to derive fully
analytical expressions. However, we may draw important
conclusions based on the investigation of the behavior of the
spectral solution. Equation �4.1� can be written in the form

� û1

��
= − û1 + 	û2,

�1 + �2e2��
� û2

��
= �1 − �2e2��û2 − 	û1, �4.2�

��2e2� + 1�
� û3

��
= �e��− 2û2 + 	û1� ,

where � depends on the initial wave-number components as
�2=k2

2 /k3
2, which, in polar coordinates �setting k2=k0 cos 


and k3=k0 sin 
, with k0
2=k2

2+k3
2� corresponds to �2=cot2
.

After some algebra, �4.2� yields

�1 + e2��2�
�2û1

��2 + 2e2��2� û1

��
+ �	2 − 1 + e2��2�û1 = 0,

�1 + �2e2��
�2û2

��2 + 4�2e2�� û2

��
+ �	2 − 1 + 3�2e2��û2 = 0,

�4.3�

û3 = − �e�û2.

Setting z=�2e2� and �̂i= ûie
�, the system �4.3� transforms to

z2�1 + z�
�2�̂1

�z2 + z2� �̂1

�z
+

	2

4
�̂1 = 0,

�4.4�

z2�1 + z�
�2�̂2

�z2 + 2z2� �̂2

�z
+

	2

4
�̂2 = 0.

The general solution of �4.4� is derived in the following
form:

�̂1�z� = C1za+F�a+,a+;2a+;− z� + C2za−F�a−,a−;2a−;− z� ,

�4.5�
�̂2�z� = C3za+F�a+,1 + a+;2a+;− z�

+ C4za−F�a−,1 + a−;2a−;− z� ,

where C1–C4 are parameters, which have to be calculated by
the initial conditions, and F�a ,b ;c ;z� is the hypergeometric
function, with the parameters a± depending on 	 as

a± =
�1 ± 
1 − 	2�

2
. �4.6�

Using the transformation formula

F�a,b;c;z� = �1 − z�−aF�a,c − b;c;
z

z − 1
� �4.7�

allows a useful argument change resulting in

�̂1�z� = C1za+�1 + z�−a+F�a+,a+;2a+;
z

1 + z
�

+ C2za−�1 + z�−a−F�a−,a−;2a−;
z

1 + z
� ,

�4.8�

�̂2�z� = C3za+�1 + z�−a+F�a+,− a−;2a+;
z

1 + z
�

+ C4za−�1 + z�−a−F�a−,− a+;2a−;
z

1 + z
� .

Writing �4.8� in terms of the original velocity Fourier com-
ponents ûi�� ,
 ,	�= �̂i�z ,	�e−�, and using the initial
conditions
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 � û1

��



�=0
= − û1

0 + 	û2
0,

�4.9�


 � û2

��



�=0
=

�1 − �2�û2
0 − 	û1

0

�1 + �2�

�where the superscript 0 denotes initial values�, the spectral
solution is derived,

û1 =
e�
1−	2

��A1
+û1

0 + A2
+û2

0� − e−2�
1−	2
�A1

−û1
0 + A2

−û2
0��

A�sin2
 + e2� cos2
�1/2 ,

û2 =
e�
1−	2

��B1
+û1

0 + B2
+û2

0� − e−2�
1−	2
�B1

−û1
0 + B2

−û2
0��

B�sin2
 + e2� cos2
�1/2 ,

�4.10�

û3 = − e� cot 
û2.

The coefficients A, B, Ai
±, and Bi

± are given in terms of hy-
pergeometric functions,

A1
± = a��sin2
 + e2� cos2
��
1−	2/2


F�a±,a±;2a±;
cos2


cos2
 + e−2� sin2

�


�2F�a�,a�;2a�;cos2
� − cos2



F�1 + a�,a�;1 + 2a�;cos2
�� ,

A2
± = 	�sin2
 + e2�cos2
��
1−	2/2


F�a�,a�;2a�;cos2
�


F�a±,a±;2a±;
cos2


cos2
 + e−2� sin2

� ,

A = a−cos2
F�1 + a−,a−;1 + 2a−;cos2
�


F�a+,a+;2a+;cos2
� + F�a−,a−;2a−;cos2
�


 �2
1 − 	2F�a+,a+;2a+;cos2
�

− a+cos2
F�1 + a+,a+;1 + 2a+;cos2
�� ,

�4.11�
B1

± = 	�sin2
 + e2� cos2
��
1−	2/2sin2



F�a�,− a±;2a�;cos2
�


F�a±,− a�;2a±;
cos2


cos2
 + e−2� sin2

� ,

B2
± = �sin2
 + e2�cos2
��
1−	2/2


F�a±,− a�;2a±;
cos2


cos2
 + e−2�sin2

�


�2�a±sin2
 − a�cos2
�F�a�,− a±;2a�;cos2
�

+ �1 + a��cos2
F�1 + a�,− a±;1 + 2a�;cos2
�� ,

B = �1 + a−�cos2
F�1 + a−,− a+;1 + 2a−;cos2
�


F�a+,− a−;2a+;cos2
� + F�a−,− a+;2a−;cos2
�


 �2
1 − 	2F�a+,− a−;2a+;cos2
�

− �1 + a+�cos2
F�1 + a+,− a−;1 + 2a+;cos2
�� .

The limit of the above solutions �4.10� and �4.11� when 

=� /2 is identical to the pressureless analysis limit, where the
equations reduce to �3.2�. However, the contribution of the
whole range of 
 must be taken into account. More specifi-
cally, as 
 departs from � /2 toward �=0 or �=�, the Fou-
rier coefficients decrease symmetrically. At exactly �=0 or
�=�, the solution becomes independent of 	, in agreement
with the principle of material indifference19 for 2D turbu-
lence independent of the axis of the frame rotation �k3=0�,

û1�
 = 0� = û1
0e−�, û2�
 = 0� = 0, û3�
 = 0� = û3

0.

�4.12�

This shows that the Fourier modes approach constant values;
the fluctuations do not grow with time. The contribution of
the full range of 
, 0�
��, results in remarkable modifi-
cations regarding the TKE evolution. This is shown in the
next section, where we derive the velocity spectrum tensor
components, Eij� ûiûj

*, and their corresponding Reynolds
stresses.

V. EVOLUTION OF THE STRESSES AND THE TKE

In order to calculate and integrate the spectra for the
derivation of the Reynolds stresses and, consequently, the
TKE, we make use of two different initializations, namely a
vortical and a jetal initial velocity spectrum.11–13 More spe-
cifically, in the vortical case the componentality of the ini-
tially strictly 2D turbulence is isotropic in planes perpendicu-
lar to the axis of independence �x1 in our case�. In this case,
the vortical 2D-2C spectrum is given by �see also Cambon
et al.20�

Eij
vor�k,0� =

E�k,0�
2�k

��k1���ij −
kikj

k2 − �i1� j1� ,

�5.1�
i = 1,2,3 j = 1,2,3.

In contrast, when the initial turbulence is completely jetal, all
the velocity fluctuations are in the direction of the axis of
independence x1. The initial 2D-1C jetal spectrum corre-
sponding to this condition is

Eij
jet�k,0� =

E�k,0�
2�k

��k1��i1� j1 for i = 1,2,3 j = 1,2,3.

�5.2�
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In the relations �5.1� and �5.2�, the initial turbulent kinetic
energy spectrum E�k ,0� satisfies

	
k=0

�

E�k,0�dk = Rii
0/2 = q0

2/2. �5.3�

Because of the linearity of the governing equations, the
energy spectra for the initially jetal 2D-1C and the vortical
2D-2C cases can be superposed to produce �after integration
over the wave numbers� Rij and Dij for various 2D-3C initial
fields, consisting of uncorrelated jets and vortices.11–13 As
pointed out by an anonymous referee, such a superposition
yields the so-called two-dimensional energy components,5,20

i.e., the product of the Reynolds stress tensor, by associated
integral length scales in the x1 direction, Lij

�1�, or equivalently,
the limit of the spectra at k1=0, �ij

�1����=���Eij�k1

=0 ,k2 ,k3 ,��e�dk2dk3.
When an initially vortical velocity spectrum �5.1� is

used, the solution �4.6� for the Fourier transformed velocity
components results in the evolution of the spectrum
components,

E11
vor = e−2�
1−	2

�sin2
 + e2� cos2
�−1�e2�
1−	2 A2
+

A
−

A2
−

A
�


�e2�
1−	2 A2
+

A
−

A2
−

A
�*

E22
0 ,

E22
vor = e−2�
1−	2

�sin2
 + e2� cos2
�−1�e2�
1−	2 B2
+

B
−

B2
−

B
�


�e2�
1−	2 B2
+

B
−

B2
−

B
�*

E22
0 , �5.4�

E12
vor =

A2
+B2

+*e4�
1−	2
− �A2

+B2
−* + A2

−B2
+*�e2�
1−	2

+ A2
−B2

−*

AB*�sin2
 + e2� cos2
�e2�
1−	2
E22

0 ,

where * denotes a complex conjugate. In the case of a jetal
initialization �5.2�, the respective spectral solution takes the
form

E11
jet = e−2�
1−	2

�sin2
 + e2� cos2
�−1�e2�
1−	2 A1
+

A
−

A1
−

A
�


�e2�
1−	2 A1
+

A
−

A1
−

A
�*

E11
0 ,

E22
jet = e−2�
1−	2

�sin2
 + e2� cos2
�−1�e2�
1−	2 B1
+

B
−

B1
−

B
�


�e2�
1−	2 B1
+

B
−

B1
−

B
�*

E11
0 , �5.5�

E12
jet =

A1
+B1

+*e4�
1−	2
− �A1

+B1
−* + A1

−B1
+*�e2�
1−	2

+ A1
−B1

−*

AB*�sin2
 + e2� cos2
�e2�
1−	2
E11

0 .

For values of 	2�1, when the parameters a± are real num-
bers �Eq. �4.5��, the Reynolds stress components R11, R22,
and R12, resulting from the integration of the spectral rela-
tions over all wave numbers, approach fast the following
behavior:

Rij
vor →

q0
2

�
e2�
1−	2	

0

� �A2
+

A
�i1 +

B2
+

B
�i2��A2

+

A
� j1 +

B2
+

B
� j2�*


sin2
�sin2
 + e2� cos2
�−1d
 ,

�5.6�

Rij
jet →

q0
2

�
e2�
1−	2	

0

� �A1
+

A
�i1 +

B1
+

B
�i2��A1

+

A
� j1 +

B1
+

B
� j2�*


�sin2
 + e2� cos2
�−1d


for i=1,2 and j=1,2. In the above integrations, the values of
the integrand �sin2
+e2�cos2
�−1 are distributed symmetri-
cally, with a bell shape, around �=� /2�k2=0�, where they
peak at 1. The width of the distribution that effectively con-
tributes to the integral shrinks with time proportionally to e�.
We may note at this point that the integral �0

��sin2

+e2� cos2
�−1d
=�e−� for any �. At the same time, the
variation of the values of the multiplying terms, ��A2

+ /A��i1

+ �B2
+ /B��i2���A2

+ /A�� j1+ �B2
+ /B�� j2�*sin2
 and ��A1

+ /A��i1

+ �B1
+ /B��i2���A1

+ /A�� j1+ �B1
+ /B�� j2�*, with respect to �, is

such that they show a nearly unchanged distribution inside
the �shrinking� range of 
, which effectively determines the
values of the integrals. Their distribution is also bell shaped,
peaking at 
=� /2 �k2=0� where they reach fixed, finite val-
ues that depend only on 	. Writing �5.6� as

Rij →
q0

2

�
e2�
1−	2	

0

�

efij�
�d� , �5.7�

the integrals now have the form necessary for applying the
method of steepest descent21 �also known as Laplace’s
method� with

f ij
jet�
� = ln���A1

+/A��i1 + �B1
+/B��i2���A1

+/A�� j1 + �B1
+/B�� j2�*

sin2
 + e2� cos2

� ,

�5.8�

f ij
vor�
� = ln� ��A2

+/A��i1 + �B2
+/B��i2���A2

+/A�� j1 + �B2
+/B�� j2�*sin2


sin2
 + e2� cos2

� ,
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which are twice-differentiable, with their first derivative be-
coming zero at �=� /2, where f ij�
� maximize. Expanding
f ij�
� around 
=� /2 by Taylor’s theorem,

f ij�
� = f ij��

2
� + f ij���

2
��
 −

�

2
�

+
1

2
f ij���

2
��
 −

�

2
�2

+ O��
 −
�

2
�3� , �5.9�

we may approximate the asymptotic behavior of �5.6� and
�5.7� as

Rij �
q0

2

�
e2�
1−	2

efij��/2�	
0

�

e�1/2�� f ij���/2���
 − ��/2��2
d�

�5.10�

�no implied summation over repeated indices�, which re-
duces to

Rij

q0
2 �

1

�
e2�
1−	2

efij��/2� 2
2

�f ij���/2��1/2	
0


2��f ij���/2��1/2/4
e−u2

du

=

2

�

e2�
1−	2 efij��/2�

�f ij���/2��1/2 erf���f ij���/2��1/2

2
2
� , �5.11�

where erf�x� is the error function. Calculating the limits of
f ij��� and f ij���� at �→� /2, we derive analytical solutions
of �5.11� for the approximate asymptotic behavior of the
stresses, for 	2�1. The value of f ij�� /2� depends only on 	
and remains fixed with time. On the other hand, the analyti-
cal limit of f ij� as �→� /2 is proportional to e2�, i.e.,

lim

→�/2

f ij��
� � e2�, �5.12�

which ensures erf�
2� � f ij��� /2��1/2 /4�→1 for large values
of � and, as a result, the evolution of the Reynolds stress
components R11, R22, and R33 approach for large times the
following form:

Rij
vor

q0
2 → cij

vor�	�e��2
1−	2−1�,

�5.13�
Rij

jet

q0
2 → cij

jet�	�e��2
1−	2−1�, i, j = 1 or 2.

The previous analysis is useful to capture the exact
asymptotic behavior in terms of �, since the coefficients,
cij�	�, are strict functions of 	. This can also be understood
from Fig. 2, where the numerical integrations of the full
spectra relations �5.4� and �5.5�, for the evolution of R11 and

R22, when multiplied by e−��2
1−	2−1�, approach fixed con-
stant values with

c11
jet � lim


→�/2
�A1

+/A�2 =
1

4

�1 − 
1 − 	2�2

1 − 	2 ,

c22
jet � lim


→�/2
�B1

+/B�2 =
1

4

	2

1 − 	2 ,

c12
jet � lim


→�/2
�A1

+B1
+/B2� =

1

4

	�1 − 
1 − 	2�
1 − 	2 ,

�5.14�

c11
vor � lim


→�/2
�A2

+/A�2 =
1

4

	2

1 − 	2 ,

c22
vor � lim


→�/2
�B2

+/B�2 =
1

4

�1 + 
1 − 	2�2

1 − 	2 ,

c12
jet � lim


→�/2
�A2

+B2
+/B2� =

1

4

	�1 + 
1 − 	2�
1 − 	2 .

As a result of �5.13�, the stress components R11 and R22

increase exponentially when 	2�3/4, determining the un-
stable regime for the evolution of TKE. Note that for plane
strain, the normal stresses do not depend a priori on the sign
of the rotation of the frame. Recalling that the governing
equation for TKE in the plane strain is

�q2/�� = ��R11 + R22 + R33�/�� = − 2R11 + 2R22, �5.15�

and using the expressions �5.15�, we calculate the respective
asymptotic form for the remaining stress component R33,

R33 − c�	� +
�3 − 2
1 − 	2�c22�	� − �1 + 2
1 − 	2�c11�	�

�− 1 + 2
1 − 	2�


e��2
1−	2−1�, �5.16�

where c�	� is the constant of the integration. Thus, R33 also
follows an exponential increase for values of 	2�3/4. The
componentality of the 2D solution in this unstable regime
remains 3C, with the normalized stress components, rij

=Rij /q2, depending on the value of 	2, yet satisfying r11

FIG. 2. Evolution of R11 �dashed� and R22 �solid�, for the 2D solution with
k1=0 �a� when a jetal initialization and �b� when a vortical initialization is
used, for 	=0.25, 0.5, 0.75, 0.87 �bold�, and 0.95. �upwards�.
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�r22�r33, as will be shown. The asymptotic states for the
normalized values are the same for both the vortical and the
jetal initialization.

It is instructive to look at the limiting states for specific
values of the dimensionless frame rotation rate. For the most
unstable case, without frame rotation, the limit of the spectral
solutions �5.4� and �5.5� for 	2→0 yields

E11�	 = 0� = e−2�E11
0 ,

�5.17�

E22�	 = 0� =
e2��1 + cot2
�

�e2� cot2
 + 1�2E22
0 ,

which after the integration over the two wave numbers, and
using �5.15�, gives the stress components as

R11/q0
2 � e−2�, R22/q0

2 � e�, R33/q0
2 � e�. �5.18�

This result agrees well with the respective expression �2.8�
by Townsend5 for the 3D case �at least in terms of the more
energetic R22 and R33 components�. Note that the pressure-
less analysis �3.2� in this particular case results in a much
stronger energy growth �e2�.

For 	2=3/4, the stress components R11 and R22 reach
constant values, and thus the R33 growth approaches a neu-
tral, linear behavior,

R33�	2 = 3/4� � � . �5.19�

As a result, the componentality of the turbulence tends to a
1C state with r11→0, r22→0, r33→1, and, because d11 is
identically 0, the turbulence approaches a 1D state with d22

→1, d33→0. That is, it develops as sheets extending perpen-
dicular to the x2 axis with jetal velocity fluctuations along the
axis of the frame rotation.

The same state is reached for values of 3 /4�	2�1,
where the R11 and R22 diminish exponentially as

�e−��1−2
1−	2�, and R33 approaches a constant value. As a
result, the TKE does not increase. This is the initial,
nonoscillatory part of the stable regime. For values of 	2

�1, the exponent 
1−	2 becomes imaginary, and also the
parameters a± are complex numbers, resulting in an oscillat-
ing behavior of the spectra, with a period proportional to
�	2−1�−1/2. At the same time the term �sin2
+e2� cos2
�−1

in the expressions �5.4� and �5.5�, when integrated over the
entire range of 
, gives a stronger exponential decay �e−�

stabilizing even faster the TKE.

VI. PRESSURE STRAIN-RATE CORRELATION

The rapid pressure strain-rate correlation tensor, which
can be used for modeling applications, can be derived from
the linear solution. It is defined as

Tij =
2

�
psij, �6.1�

where sij=
1
2 �ui,j +uj,i� is the fluctuating strain rate tensor.

Equation �6.1� can be calculated by integrating the pressure-

strain spectrum, �ij= �−i /2��p̂�kjûi+kiûj�*+ �kjûi+kiûj�p̂*

over all wave numbers

Tij = 	
k

�ij�k,��d3k . �6.2�

In our case of plane strain flow with k1=0, �ij in cylindrical
coordinates reduces to

�11 = 0, �22 = 2�e2� − 2E22 + 	E12

e2� cos2
 + sin2

cos2
 ,

�6.3�

�33 = − �22, �12 = �e2� − 2E21 + 	E11

e2� cos2
 + sin2

cos2
 .

Due to the multiplication of the velocity spectra in �6.3� by
the square of the wave-number component �e2� cos2��, these
spectra vanish at the limit �=� /2 �unlike the E11 and E22

forms�. A profound maximum occurs in the vicinity of �
=� /2, but the location and the peak value depend on both �
and 	. In order to derive information regarding the statistics,
we use the equations for the evolution of the stress compo-
nents, which results in

T22

�
=

dR22

d�
− 2R22 + 2	R12,

T12

�
=

dR12

d�
+ 	R11 − 	R22,

�6.4�

and making use of �5.13� we conclude that the pressure-
strain correlations, inside the unstable regime, approach the
following exponential behavior for large �:

T22

�
→ �c22�2
1 − 	2 − 3� + 2	c12�exp��2
1−	2−1�,

�6.5�
T12

�
→ �c12�2
1 − 	2 − 1� − 	c22 + 	c11�exp��2
1−	2−1�,

and the normalized values �ij=Tij / ��Rkk� reach asymptoti-
cally the values

�22 = r22�2
1 − 	2 − 3� + 2	r12,

�6.6�
�12 = r12�2
1 − 	2 − 1� − 	r22 + 	r11,

where rij are the respective asymptotic limits for the normal-
ized stress components. For 	2=3/4, Tij tend to constant
values, and the normalized �ij approach zero, with a depen-
dence ��−1. In the stable regime, all the pressure strain-rate
tensor components vanish relatively fast.

VII. COMPARISON OF THE 2D WITH THE 3D
INITIALLY ISOTROPIC CASE

In Fig. 3, we present a comparison between the TKE
evolution calculated by the analytical expressions derived
here using the initially 2D-3C case with k1=0, and the nu-
merical solution of the 3D-3C initially isotropic initialization
calculated using the Particle Representation Model �PRM�
by Kassinos and Reynolds,14 with a large enough number of
particles to ensure the accuracy of the solution. The 2D ana-
lytical results are presented for a 2/3-1/3 weighted superpo-
sition �which corresponds to an initial equipartition of the
energy as r11=r22=r33=1/3� between the vortical and the
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jetal initializations, respectively. From the comparison, it
turns out that the 2D solution explains accurately the type of
the TKE growth, while identifying the value of −1
+2
1−	2 as the correct parameter for the determination of
the stability of the turbulent flow. Starting with the unstable
cases, we notice the strong exponential evolution with time,

which is of the form �e�−1+2
1−	2��. When 	2 reaches ex-
actly the value 3/4, there is a departure from the exponential
behavior toward a linear growth �neutral limit�, while for
	2�3/4 the TKE stabilizes.

In Fig. 4, the evolutions of the normalized stresses rij

and the structure dimensionality tensor components dij for
the 2D approximation are illustrated for several 	2, and com-
pared with the respective 3D-PRM exact numerical solu-
tions. Despite the expected initial differences, as can be seen,
for any value of 	2 the limiting states reached by the 2D case
are in perfect agreement with the corresponding limiting
states for initially 3D isotropic turbulence. The same agree-
ment is also observed in the case of the normalized pressure-
strain correlations in Fig. 5.

As mentioned, independently of the frame rotation rate,
the d11 component in the 3D solution tends quickly to zero,
which is why the 2D solution with k1=0 proved to be a good
approximation. For the unstable cases, the turbulence
evolves fast toward a 2D-3C state, and the final distribution
of the TKE among the different stress components, as well as
the anisotropy of the dimensionality tensor in the 2D plane,
depend on the value of 	2. The asymptotic states for the
dimensionality and the componentality for the unstable cases
are given in Table I. These values have been calculated using
the numerical integration of the full spectral relations �5.4�
and �5.5� at the limit when �→�.

From Fig. 4, it becomes clear that for the neutral limit
and for the stable cases, the turbulence evolves more slowly
toward a fixed 1D-1C state with r33→1, d22→1. That is, the
turbulence appears as sheets perpendicular to the x2 axis with
turbulent velocity fluctuations along the axis of the frame
rotation.

FIG. 3. Comparisons of the evolutions of the TKE, normalized with its
initial value, for 	=0.5, 0.8, 
3/2, 0.9, 1, and 2 �clockwise�, for the initially
homogeneous 3D case calculated numerically with the PRM model �solid�
and the 2D case with k1=0 �dashed�.

FIG. 4. Comparisons of the evolutions of the normal-
ized stresses �left� and the structure dimensionality
�right� components 11 �solid�, 22 �short dashed�, and 33
�long dashed� for 	=0.5 �a�, 0.8 �b�, and 2 �c�, for
initially isotropic 3D turbulence �black� and 2D with
k1=0 �gray�.
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VIII. CONCLUSIONS

In the present study, we investigated turbulent plain
strain flow in a rotating frame using RDT. Specifically, we
determined the dependence of the evolution of the turbulent
kinetic energy on the frame rotation rate. As shown, the over-
simplified pressureless analysis cannot describe correctly the
transition between the unstable and stable regimes, as well as
the proper growth rate of the TKE. In contrast, the analytical
2D solution with k1=0, which was derived here, maintains
the crucial dependence on the pressure fluctuations, allowing
for an accurate approximation of the 3D initially isotropic
problem. The comparison with the 3D numerical results
shows that despite expected initial differences, the 2D solu-
tion explains accurately the type of TKE growth, demonstrat-
ing that −1+2
1−	2 �as found by the 2D analysis� is the
proper parameter for the determination of the stability of the
turbulent plain strain flow. Additionally, the calculated 2D
asymptotic states of the turbulence, in terms of the normal-
ized Reynolds stresses and the structure dimensionality ten-
sor components, show a 2D-3C character for the unstable
regime and a 1D-1C character elsewhere. This picture coin-
cides with the exact three-dimensional numerical results. The
findings of this work establish the framework for a general-
ized solution for hyperbolic flows in future work. Such gen-
eralized solutions will greatly improve our basic understand-
ing of this important class of flows.
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