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We apply inviscid rapid distortion theory to the generalized case of turbulent hyperbolic flow in a
rotating frame and investigate the dependence of the evolution of the turbulent kinetic energy on the
frame rotation rate. We derive an analytical two-dimensional solution which allows for an accurate
approximation of the three-dimensional initially isotropic problem. From the analytical solutions we
determine a new generalized stability criterion for the evolution of the turbulent kinetic energy in
this class of flows. © 2007 American Institute of Physics. �DOI: 10.1063/1.2821911�

In this study we follow the methodology presented in
Ref. 1 and we generalize the respective solution for any hy-
perbolic flow. We show that the turbulence in the hyperbolic
cases tends to align at least with one well-specified axis �de-
fining the eddy-axis system�, which means that the turbu-
lence becomes independent of the corresponding direction.
We derive analytical spectral solutions, at this particular two-
dimensional �2D� limit, for the fluctuating velocity compo-
nents. The subsequent analysis of the stresses yields the cor-
rect stability criterion for the evolution of the turbulent
kinetic energy �TKE�. The solutions are validated by com-
parison with the three-dimensional �3D� numerical results,
calculated using the particle representation model �PRM�.2–4

In the case of a generalized hyperbolic flow with frame ro-
tation, the mean strain rate, mean rotation rate, and frame
rotation rate tensors in the laboratory x̃i reference frame are

S̃ij = ���i1� j2 + �i2� j1�, �ij = �ij3�, �ij
f = �ij3� f , �1�

with ���� ���. The value �=0 corresponds to the lower lim-
iting case of the plane strain flow, while �=� determines the
upper limiting pure shear flow case. The linear rapid distor-
tion theory �RDT� equations for the evolution of the fluctu-
ating velocity components ũi�x̃1 , x̃2 , x̃3� in this reference
frame are

�ũi

�t
= − �� + ���x̃2

�ũi

�x̃1

+ �i1ũ2� − �� − ���x̃1
�ũi

�x̃2

+ �i2ũ1�
−

1

�

�p

�x̃i

+ 2�ij3� fũj . �2�

As will be shown, in hyperbolic flows the evolution of the
turbulence under RDT is such that it approaches a two-
dimensional state. More specifically, turbulent eddies align
with a specific direction and the fluctuating velocities be-
come independent of this particular direction. For the subse-
quent analysis we choose a coordinate system aligned with
this direction of independence, the eddy-axis system. This

allows for a simplified 2D analysis, following the methodol-
ogy presented in Ref. 1 for plane strain flow. We determine
the eddy-axis system by looking at the final orientation of
evolving material lines.5 Taking the evolution of a material
line �i �Refs. 5–7�, we find the evolution equation of the
eddy-axis vector ai=�i /�

dai/dt = d��i/��/dt = Gikak − bai, �3�

where � is the magnitude. Setting dai /dt=0 in Eq. �3�, we
derive the fixed orientation of the material line, determining
the axis of independence, as

b2 = �2 − �2, a1 =�� + �

2�
, a2 =�� − �

2�
. �4�

We transform now Eqs. �1� and �2� from the laboratory ref-
erence frame �x̃1 , x̃2 , x̃3�, into the new eddy-axes coordinates.
Noting that a1 and a2 are direction cosines, the coordinate
transformation follows

x1 = a1x̃1 + a2x̃2, x2 = − a2x̃1 + a1x̃2, x3 = x̃3,

�5�
u1 = a1ũ1 + a2ũ2, u2 = − a2ũ1 + a1ũ2, u3 = ũ3,

and the mean gradients transform to �note that the transfor-
mation does not modify the rotation tensors, since the rota-
tion is around the x3 axis�

Sij = ���i1� j2 + �i2� j1� + ��2 − �2��i1� j1 − �i2� j2� . �6�

In the eddy-axes coordinates, Sij is diagonal. From Eq. �6� it
follows that for the limiting pure shear case ��=�� the trans-
formed coordinates coincide with the initial reference frame,
while for the limiting plane strain case ��=0� the trans-
formed coordinates are turned by � /4. In the new coordinate
system, the three-dimensional and three-component �3D-3C�
linear equations for the fluctuating momentum are

�ui

�t
= − 2���i1u2 + x2

�ui

�x1
� − ��2 − �2��i1u1 − �i2u2

+ x1
�ui

�x1
− x2

�ui

�x2
� −

1

�

�p

�xi
+ 2�ij3� fuj . �7�

For �=�, Eq. �7� corresponds to the pure shear case,8 with
S=2�=2�, while for �=0, Eq. �7� reduces to Eq. �2.5� in
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Ref. 1 for plane strain turbulent flow. Using the Rogallo9–11

transformation, we set

�i = �i1�x1e−�*t − x2
2	

�1 − 	2
sinh��*t�� + �i2x2e�*t + �i3x3,

�8�

where 	=� /�
1 and �*=��1−	2, and Eq. �7� transforms
to

�ui

�t
= �*�i2u2 − �i1�2�u2 + �*u1� + 2�ij3� fui

−
1

�
	 �p

��i
��i1e−�*t + �i2e�*t + �i3�

− �i2
�p

��1

2	 sinh��*t�
�1 − 	2 
 , �9�

Applying the Fourier transformation to Eq. �9�, the Fourier
coefficients �denoted with ˆ� for the fluctuating velocity com-
ponents in spectral space evolve as

�ûi

�t
= i

p̂

�
ki − 2��i1û2 − �*��i1û1 − �i2û2� + 2�ij3� fûj ,

�10�

where due to the deformation applied, the wave numbers
evolve as

ki = �i1k1
0e−�*t + �i2�k2

0e�*t − k1
0 2	

�1 − 	2
sinh��*t�� + �i3k3

0,

�11�

where the superscript “0” denotes initial values. From Eq.
�11� it is clear that in the generalized hyperbolic case the
wave number component k1

0e−�*t vanishes with time �Fig. 3�
and thus, the turbulence approaches a state which is indepen-
dent of the x1 axis in the eddy-axis frame. Introducing the 2D
Fourier mode with k�k1=0 ,k2 ,k3�, similar to Ref. 1, the sys-
tem �10� simplifies

�û1/�t = − 2�û2 − �*û1 + 2� fû2,

�12�
�û2/�t = �*û2 + ip̂k2e�*t/� − 2� fû1, �û3/�t = ip̂k3/� .

Applying the Fourier transformed continuity equation,
k2e�*tû2+k3û3=0, we can solve for the pressure, resulting in

�û1

��* = 2
�� f − ��

�* û2 − û1,

�û2

��* =

k3
2û2 − k2

2e2�*
û2 −

2� f

�* k3
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k2
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+ k3
2

, �13�
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2e2�*

+ k3
2

,

where �*=�*t. Furthermore, we set �2=k2
2 /k3

2 and

�

2=4� f�� f −�� /��
2, and after some algebra, the system of

equations �13� yields the uncoupled forms

�1 + �2e2�*
�
�2û1

��*2 + 2�2e2�* �û1

��*
+ �
*2 − 1 + �2e2�*

�û1 = 0,

û3 = − �e�*
û2, �14�

�1 + �2e2�*
�
�2û2

��*2 + 4�2e2�* �û2

��*
+ �
*2 − 1 + 3�2e2�*

�û2 = 0,

Equations �14� are the same as the respective equations �4.3�
obtained in Ref. 1 for plane strain turbulent flow in a rotating
frame. Consequently the general solution of Eq. �14� is ex-
actly the same as the general solution in Ref. 1 for the plane
strain case �their Eq. �4.10��

û1 =
e��1−
*2

��A1
+û1

0 + A2
+û2

0� − e−2�*�1−
*2
�A1

−û1
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−û2
0��

A�sin2 � + e2�* cos2 ��1/2 ,

û2 =
e�*�1−
*2

��B1
+û1

0 + B2
+û2

0� − e−2�*�1−
*2
�B1

−û1
0 + B2

−û2
0��

B�sin2 � + e2�* cos2 ��1/2 ,

�15�

û3 = − e�* cot �û2.

However, the generalized initial conditions are slightly dif-
ferent compared to the ones in Ref. 1,

� �û1

��*�
�*=0

=
�
 − 2	�
�1 − 	2

û2
0 − û1

0,

�16�

� �û2

��*�
�*=0

=
�1 − �2�û2

0 − �
/�1 − 	2�û1
0

1 + �2 ,

and thus, A2
± and B1

± in Eqs. �15� are slightly modified as

A2
±=A2PS

± �
−2	� /�1−	2, B1
±=B1PS

± 
 /�1−	2, where the sub-
script “PS” refers to the solutions �4.10� in Ref. 1. The pa-
rameters a± in the corresponding hypergeometric functions,

depending on 
*2 as a±= �1±�1−
*2� /2. The limit of the
solutions �15� when �=� /2, is identical to the one-
dimensional �1D� pressureless analysis limit,1 where the
equations result in an exponential growth of the TKE with
time, for 
*2�1. For values of 
*2 larger than 1, the stresses
�at this pressureless 1D limit� oscillate and the TKE stabi-
lizes around a constant value. The same criterion for the
stabilization of the TKE has been reported in Ref. 12 based
on their pressureless analysis of a generalized quadratic flow.
However, as shown in Ref. 1 for the plane strain case, the
contribution of the whole range of � must be taken into
account. More specifically, as � departs from � /2 towards
�=0 or �=�, the Fourier coefficients decrease symmetri-
cally. At exactly �=0 or �=�, the solution becomes inde-
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pendent of the frame rotation rate, in agreement with the
principle of material indifference13 for 2D turbulence inde-
pendent of the axis of the frame rotation �k3=0�. This shows
that the Fourier modes approach constant values; the fluctua-
tions do not grow with time. As in the case of plane strain,1

the contribution of the full � range, i.e., 0
�
�, modifies
markedly the TKE evolution and, as a result, also modifies
the stability limits compared to the pressureless approach.
Following similar arguments as presented in Ref. 1 for the
plane strain case, and applying the same way the steepest
descent analysis method, it becomes clear that for values of

*2
1, when the parameters a± are real numbers, the Rey-
nolds stress components R11, R22, R33, and R12 �and conse-
quently the TKE� resulting from the integration of the spec-
tral relations over all wave numbers, approach quickly the

following exponential behavior: Rij�exp��*�2�1−
*2−1��.
For values of 
*2�1, the parameters a± are complex num-
bers, resulting in the stabilization of the energy showing
damped oscillations, with a period proportional to �
*2

−1�−1/2. As a result of the 2D analysis, the stability criterion
for a generalized hyperbolic flow is 
*2
3 /4, which, in
terms of the governing parameters 	 and 
, shows that the
unstable hyperbolic cases are located in the range �Fig. 1�:

	 − �3 + 	2/2 
 
 
 	 + �3 + 	2/2. �17�

Outside this range, the TKE stabilizes. The unstable regime
shown in Fig. 1 can be divided in two well defined regions.
For values of 0�
*2�3 /4 we can connect the results di-
rectly to the solutions for plane strain for the same 
*. Using
vortical and jetal initial turbulence,1 Eqs. �15� show, respec-
tively, that

R����*� = A��R��,PS��PS = �*,
PS = 
*� �18�

�no summation implied by repeated greek indices�, where for
the vortical cases A11

vor=1−2	 /
, A22
vor=A33

vor=1, and A12
vor

=�A11
vor, while for the jetal cases A11

jet=1, A22
jet=A33

jet= �1
−2	 /
�−1, and A12

jet=�A22
jet. Note that the dimensionless time

�* in the solutions for the generalized hyperbolic flow cor-
responds to the dimensionless time �PS in the specific solu-
tion for the plane strain case. For Eq. �18�, it can be shown
that the long time asymptotic states for the componentality of
the turbulence, in the eddy-axes coordinates, which is de-
scribed by the normalized stresses rij=Rij /Rkk, are linked to
the respective ones for the corresponding plane strain cases
�Table I in Ref. 1� through

r�� =
A��

vorr��,PS�
 − 2	�/

r11,PS�
 − 2	�/
 + r22,PS + r33,PS

, �19�

When 
*2�0, there is no such connection because there is
no plane strain case corresponding to negative 
*2. In this
range, the energy growth increases �following the increase of

the parameter 2�1−
*2, in the exponents� and peaks for 

=	, when 
*2 takes the largest negative values. In Fig. 2 we
present a comparison between the TKE evolution calculated
by the analytical expressions derived here using the initially
2D-3C case with k1=0, and the numerical solution for the
3D-3C initially isotropic case calculated using the PRM,2–4

with large enough number of particles to ensure the accuracy
of the solution. The 2D results are presented for a 2 /3–1 /3
weighted superposition between the vortical and the jetal ini-
tializations, respectively. This corresponds to an initial equi-
partition of the energy: r11=r22=r33=1 /3. From the compari-
son it turns out that the 2D solution explains accurately the
type of the TKE growth, identifying the parameter −1
+2�1−
*2 as the criterion for the stability of the turbulent
flow. Starting with the most unstable case �for 
*2=−1 /3�,
we notice a strong exponential evolution with time, which is
of the form �exp��−1+2�1−
*2��*�. As 
*2 increases the
exponential growth becomes less pronounced. When 
*2

reaches exactly the value 3 /4, there is a departure from the
exponential behavior towards a linear growth �neutral limit�,
while for 
*2�3 /4 the TKE stabilizes. However, identifying
the true “neutral state” is rather difficult, since no account for
viscous dissipation of TKE has been made. In Fig. 3, the
evolution of the normalized stresses rij and the structure di-
mensionality tensor components dij �Ref. 1� for the 2D ap-
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FIG. 1. The dependence of the turbulence stability on the governing param-
eters 
 and 	, for a general hyperbolic flow in a rotating frame. The solid
lines �
*2=3 /4� bound the unstable regime and the long dashed lines
�
*2=0� determine the range of the negative values for 
*2. In the latter the
energy growth peaks when 
=	 �short dashed line�.
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FIG. 2. Evolution of the TKE, normalized by its initial value, for the ini-
tially homogeneous 3D case calculated numerically with the PRM �solid�
and the 2D analysis presented here �dashed� for 	=0.5 and 
*2=−1 /3, 0,
0.5, 0.75, 1, and 3.35 �clockwise�.
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proximation are illustrated for several 
*2, and compared
with the respective 3D-PRM exact numerical solutions �in
eddy-axes coordinates�. Despite the initial differences �at
short times, due to the different initializations�, the two so-
lutions quickly converge to each other, and for any value of

*2 the limiting states reached by the 2D case are the same
as the corresponding limiting states for initially 3D isotropic
turbulence. As mentioned, the d11 component in the 3D so-
lution �in the eddy-axis system� tends quickly to zero, inde-
pendently of the rotation rate, which is why the 2D solution
with k1=0 is a good approximation. For the unstable cases
the turbulence evolves fast towards a 2D-3C state, and the
final distribution of the TKE among the different stress com-
ponents, as well as the anisotropy of the dimensionality ten-
sor in the 2D plane, depends on the value of 
*2. For the
neutral limit and for the stable cases the turbulence evolves
towards a fixed 1D-1C state with r33→1, d22→1. That is,
the turbulence appears as sheets perpendicular to the x2 axis
with turbulent velocity fluctuations along the axis of the
frame rotation.
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FIG. 3. Comparisons of the evolution of the normalized stresses �right� and the structure dimensionality �left� components 11 �solid�, 22 �short dashed�, 33
�long dashed�, 12 �dotted dashed� for 
*2=0.25 with 	=0.25 �a�, 0.5 �b�, 0.75 �c�, for 
*2=0.64 with 	=0.75 �d�, for initially isotropic 3D turbulence �black�
and 2D with k1=0 �gray�.
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