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Stationarity of linearly forced turbulence in finite domains
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A simple scheme of forcing turbulence away from decay was introduced by Lundgren some time ago, the
“linear forcing,” which amounts to a force term that is linear in the velocity field with a constant coefficient. The
evolution of linearly forced turbulence toward a stationary final state, as indicated by direct numerical simulations
(DNS), is examined from a theoretical point of view based on symmetry arguments. In order to follow closely
the DNS, the flow is assumed to live in a cubic domain with periodic boundary conditions. The simplicity of
the linear forcing scheme allows one to rewrite the problem as one of decaying turbulence with a decreasing
viscosity. Its late-time behavior can then be studied by scaling symmetry considerations. The evolution of the
system in the description of “decaying” turbulence can be understood as the gradual symmetry breaking of a
larger approximate symmetry to a smaller symmetry that is exact at late times. The latter symmetry implies a
stationary state: In the original description all correlators are constant in time, while, in the “decaying” turbulence
description, that state possesses constant Reynolds number and integral length scale. The finiteness of the domain
is intimately related to the evolution of the system to a stationary state at late times: In linear forcing there is
no other large scale than the domain size, therefore, it is the only scale available to set the magnitude of the
necessarily constant integral length scale in the stationary state. A high degree of local isotropy is implied by the
late-time exact symmetry, the symmetries of the domain itself, and the solenoidal nature of the velocity field.
The fluctuations observed in the DNS for all quantities in the stationary state can be associated with deviations
from isotropy that is necessarily broken at the large scale by the finiteness of the domain. Indeed, to strengthen
this conclusion somewhat, self-preserving isotropic turbulence models are used to study evolution from a direct
dynamical point of view. Simultaneously, the naturalness of the Taylor microscale as a self-similarity scale in
this system is emphasized. In this context the stationary state emerges as a stable fixed point. We also note that
self-preservation seems to be the reason behind a noted similarity of the third-order structure function between
the linearly forced and freely decaying turbulence, where, again, the finiteness of the domain plays a significant

role.
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I. INTRODUCTION

Maintaining a turbulent flow in a more or less stationary
state, for better statistics in experiment or convenience in
theoretical considerations, requires forcing the flow, that is,
feeding it energy that balances dissipation happening at the
smallest scales. In numerical simulations of incompressible
isotropic turbulent flows one usually solves the Navier-Stokes
equations in a cubic box (with periodic boundary conditions).
For an account of direct numerical simulation (DNS) methods,
see Ref. [1]; for a recent review on the current isotropic
turbulence statistics from DNS, see Ref. [2]. In most cases,
forcing takes the form of a force term in wave number space
(spectral space) that vanishes for all but the smaller wave
numbers, i.e., one feeds energy at the largest scales of the
turbulent flow in the box. The general concept is that the details
of the larger scales are model dependent but the details of all
other scales, that is, those where some universal laws may hold,
depend only on the intrinsic dynamics of the Navier-Stokes
equations, at least for high Reynolds numbers. Presumably, by
forcing turbulence, one achieves satisfactory results for given
a resolution for higher Reynolds numbers than in the freely
decaying turbulence.
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There have been developed various kinds of forcing
schemes. The simpler ones fiddle in a suitable manner
the magnitude of velocity field, or the total energy of the
lower wave number modes, imitating an energy input in
the larger scales [3—6]. These models can be regarded as
essentially deterministic in the sense that that there is no
additional randomness introduced in the problem. There are
also deterministic models that explicitly introduce a force
term in the Navier-Stokes equations, whose details are either
postulated or derived by a postulated auxiliary model [7-10].
In stochastic forcing models [11-13] the details of the force
term are determined by additional random variables following
prescribed stochastic processes. Each of those models suffers
from one set or more sets of problems, such as excessive fluc-
tuations around stationarity, relatively long relaxation period
to stationarity, persistent anisotropy, excessive distortion of
large-scale motions, and introduction of irrelevant features in
the description of turbulence. A useful comparative discussion
between certain deterministic and stochastic models can be
found in Ref. [14].

Lundgren proposed in Ref. [15] that we may simplify the
deterministic models to the bare minimum, in some sense,
assuming that the usually velocity dependent force term is
merely proportional to the velocity field for all positions x, or
all wave numbers k, and all times: f = Au, where A is plainly
a constant. The “linear forcing” scheme was further studied
in Refs. [16,17]. Its simple force term Au has the same form
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FIG. 1. A typical evolution of the energy production rate (solid
line) and dissipation rate (dashed line) is shown in (a) and Taylor
microscale Reynolds number in (b). The parameters chosen are A =
1, box size [ = 2, and viscosity v = 0.1.

in both the spectral and physical spaces. Thus, unlike other
forcing schemes, it may be used equally well in cases that
need to be solved directly in the physical space with boundary
conditions that differ from periodic ones [16]. That feature
could prove useful. Additionally, although in linear forcing the
injection of energy into the flow is not restricted to the larger
scales, this scheme performs decently and, in fact, possibly
better in the region between the inertial range and the integral
scale than the other forcing schemes in Ref. [15]. From the
theoretical point of view, what matters most is that, unlike
limited spectral bandwidth forcing schemes, linear forcing
does not introduce an additional length scale in the problem
at the level of the Navier-Stokes equations (a length scale
outside the equations is, of course, introduced by the boundary
conditions).

The performance of the linear forcing scheme with respect
to its convergence properties was studied in considerable detail
in Ref. [16] and useful remarks were made in Ref. [14]. The
clear conclusion is that linear forcing results in relatively
large fluctuations in the stationary phase. Indeed, a typical
evolution of the energy production rate 2AK (where K is
the total kinetic energy per unit mass), the dissipation rate ¢,
and the Taylor microscale Reynolds number Re; is shown in
Fig. 1. (The details of the DNS can be found in Ref. [17].)
From the practical point of view this is a disadvantage
as it requires longer simulations in order to obtain good
statistics. Moreover, the stationary state is reached after a
relatively long transient period [14,16], requiring even more
computational time. On the other hand, linear forcing leads to
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quite controllable situations in the stationary state: Given the
scales of the problem, i.e., the rate A, the cubic box size /, and
the viscosity v, the facts of the stationary state are predictable.
The balance between the energy production and dissipation,
2AK = g,isindeed observed on the (time-)average, validating
the very concept of a stationary state; the dissipation length
L, =Q2K )% /€ turns out to be equal to the box size [ within
few percentage points of error in all cases [16]. The Reynolds
number Re; = K?/(gv) may be rewritten as %AL?/U at the
stationary state and should then be roughly equal to j—‘ of the
natural order of Re, in this problem, A/ 2 /v, in all cases, as
isobserved [17]. For example, the Taylor microscale Reynolds
number Re; = (23—0ReL)% is expected to be roughly equal to
25.7 for the run shown in Fig. 1. Indeed, the average of the
Re; time series in Fig. 1 differs by only few percentage points
from that estimate.

Even if we take stationarity for granted, its characteristics,
i.e., the relatively large fluctuations and the “predictability”
of quantities describing the state of turbulence, certainly call
for understanding. On the other hand, the very existence of a
stationary state in this scheme is a fairly intriguing matter.
The long-time effect of the energy production competing
with dissipation is not, a priori, clear. From the dynamical
point of view, it is clear that the dissipation term vV2y
becomes stronger than the force term Au at scales smaller
than (v/ A)% ~ Re;ll , but it is not clear whether energy that
is produced at all other scales up to / will be dissipated by an
adequate rate at those smaller scales.

We will approach the problem as follows. The relative
simplicity of linear forcing allows us to study its late-time
evolution employing scaling symmetry arguments to an extent
enjoyed possibly only in freely decaying turbulence; in fact, as
we shall show, there is a relationship between linearly forced
and freely decaying turbulence. A parallel discussion between
them can be made. Sections II-V will be devoted to presenting
these arguments. The predictability, as we called it above, of
the stationary state, is enlightened through those symmetry
arguments, essentially on the basis that there is no intrinsic
large length scale in the dynamical equations apart from that
introduced by the boundary conditions, i.e., the finite size
[ of the domain. The remaining question, then, is why the
fluctuations observed in the stationary state, as seen, e.g.,
in the Fig. 1, are so large. We shall argue, as analytically
as we can, that the fluctuations can be associated with the
deviations from isotropy accumulated by this forcing at all
scales between the scale (v/ A)% and the domain size / (unlike
the limited bandwidth forcing schemes that feed anisotropy
only at the domain size scale where isotropy is already broken).
The method we shall use is to reduce the dynamical problem
to a two-equation model. As a cross-check of our previous
conclusions, the stationary state re-emerges as a stable fixed
point of the evolution, a by-product of which is that fluctuations
tend to be suppressed as long as turbulence is isotropic. This
part of our discussion is presented mostly in Secs. VI and
VIL. It is interesting to note that, from various aspects, linearly
forced turbulence seems to be a natural context for the direct
application of various ideas that have been developed in the
study of freely decaying turbulence, in fact, one may dare say,
an even more natural context.

046312-2



STATIONARITY OF LINEARLY FORCED TURBULENCEIN ...

In terms of equations, a linearly forced incompressible flow
with zero mean flow velocity is described by the Navier-Stokes
equation

du 1 oy

— 4+ @ -Vyu=—-—-Vp+vV-u+ Au, (1)
at 0

where the incompressibility condition reads V -u = 0; the
velocity field is solenoidal. A is a positive constant with
dimensions of inverse time. The term Au is a curious
“antidrag” force on fluid particles. (If there is a mean flow
with velocity U, the force term should read A(u — U), i.e.,
it involves the fluid velocity relatively to the mean flow.
Presumably, the forcing does not break Galilean symmetry.
If that were not the case, the forcing would lead to physical
pathologies; see, e.g., Ref. [18].) As already mentioned, we
impose periodic boundary conditions: u(x,y,z) = u(x,y +
l,z) =u(x,y,z+ 1) =u(x +1,y,z). That is, the flow evolves
within a cubic domain with a side equal to /, obeying the
given conditions on its boundary. (We will often refer to
the cubic domain simply as the box.) As we shall emphasize
later, the term cubic domain is slightly misleading due to the
periodic boundary conditions: The flow essentially evolves
in a boundary-less space of finite size. There are no walls
anywhere, and this is why we describe the domain as finite
instead of bounded. The problem we are interested in to
determine the late-time state of the turbulent flow governed
by these equations and conditions.

The present work is organized as follows. In Secs. II and
IIT a reformulation of the problem and an associated scaling
symmetry are presented. In Sec. IV the implications of the
scaling symmetry and of the symmetries of the domain for
the late-time behavior of the ensemble average correlators
are discussed. In Sec. V we restrict ourselves to isotropic
turbulence to argue in a more detailed manner for the stationary
state as the final phase of the linearly forced turbulence,
as described by the exact ensemble average correlators and
taking into account the effects of the finiteness of the domain.
In Sec. VI the expected behavior of the actual observables
in DNS, i.e., the box-averaged correlators, is discussed in
relation to the properties of the ensemble average correlators
established in the previous sections. In Sec. VII we combine the
powerful condition of isotropy with the (by now established)
existence of fluctuations around stationarity: A complete
self-preserving isotropic turbulence model is obtained and
applied to study the fate of fluctuations at scales in the flow
where isotropy holds. We close by summarizing our work
and by touching on some other interesting aspects of linearly
forced turbulence, discussing also certain open issues of the
problem in the final section.

II. UNFORCED TURBULENCE WITH DECAYING
VISCOSITY

We shall proceed as follows. Mathematically, we may
rewrite the problem as an equation for a new field u':

ou’ , , Lo o2
— 4@ -V =——Vp +V Vi, 2
at’ P
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with v’ being related to u by
u = Fu, 3

where F is a function of time F = F(¢’) to be determined and
V -u = 0implies that V - u’ = 0.
Substituting (3) into (2) we get

1dF+18u+( v) 11V’+1’V2
——ut+—-—+@-Vu=——-— —v'V-u.
Frdr " For 2y P T F
“)
This equation becomes identical to Eq. (1) on setting
, 1 dF ,
Fdt'=dt, ——=—A, VvV =Fv. 5
F? dr

The transformation of pressure, p’ = F2p, follows from its
Laplace equation constraint and cannot be regarded as an
independent condition.

For constant A we have from the first two differential
equations above that

F — ¢~ AUt+)  an4q At +t(’,) — eA(H—lo)’ (6)
where 7, and 7/ are integration constants.
Viscosity v’ reads

, 1

Vv = mv, (7)

in the unphysical time coordinate ¢. The problem has become
unforced turbulence with decaying viscosity. The way it
decays, oc1/¢', is crucial in what follows.

Note that everything can be transformed back to the initial
variables at all times, except t = 0o or ¢’ = co. This is a
singular point of the transformation as F vanishes and the
two forms of the problem are not equivalent. This would be a
relevant subtlety only if we had to deal with the actual limit
t — o0o. We will not need such a limit anywhere in our analysis.

It also worth noting that a transformation r — ¢’ can gen-
erate only a term that is linear in u, unless the transformation
depends itself on the velocity field. Therefore, the possibility
of such a generating transformation is intimately related to
linear forcing.

III. TIME-TRANSLATION INVARIANCE AND AN EXACT
SCALING SYMMETRY

Note that Eq. (1) does not explicitly depend on time,
forcing being a function of the velocity field alone. Therefore,
depending on boundary conditions, this equation may permit
nontrivial solutions that are static or independent of time
in a certain sense. As we are interested in fully developed
turbulence, the time dependence in question will apply to
statistically defined quantities.

The Navier-Stokes equations we arrived at by transforming
to time ¢ in the previous section explicitly reads

811/ +( / V) / 1 \v/ / 4 v Vz / (8)
— u-vu =—— —Vu,
or’ P P At +1)

where p, v, and A are constants and V - u’ = 0. Apart from the
fairly peculiar time dependence of viscosity, that is, the energy
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dissipation rate decreases with time, the form of this equation
is more familiar than that of Eq. (1).

The time-translation invariance of Eq. (1) now translates to
an exact scaling symmetry of Eq. (8). Even by inspection one
may verify that the transformation

u — e %, 9)

41— et +1),
for any constant g is an exact symmetry of the previous
equation (necessarily, p’ — e~ p’).

Formulas will take a more attractive form, more in line
with our purposes, as we shall explain below, if we drop the
arbitrary integration constant ¢/, for example, by redefining the
time coordinate ¢’, and write the symmetry in the form

u — e . (10)

t'— et
The constant 7, can be set to a specific value only by additional
conditions, most probably associated with the early stages of
the evolution of the flow. This will be the case only in Sec. V C.
In fact, as our reasoning will refer mostly to the fully developed
stage of turbulence, that is, at late times that lie far away from
the initial conditions, any such constant 7/ can be equivalently
kept or dropped, or even changed to another convenient value,
at an increasingly good approximation as the flow evolves.
The origin of the late-time scaling symmetry is clear:
Shifting r means rescaling #’. Shifting ¢ is a symmetry of
Eq. (1), therefore rescaling ¢ must be a symmetry of Eq. (8),
as it is indeed the case. It is important to remember that the
symmetry (10) respects the periodic boundary conditions on
the field u’, therefore, it is an exact symmetry of the problem.
We may now forget Eq. (1) for a little while and focus
on the unforced turbulence described by Eq. (8). Its scaling
symmetry will allow us to draw certain conclusions about the
late-time behavior of the system.

IV. SCALING SYMMETRIES, ASYMPTOTIC BEHAVIOR,
AND ISOTROPY

In order to get a first idea why the symmetry can be useful
that way, note that the product #'u’ is invariant under the scaling
(10). Consider an arbitrarily chosen moment of time ¢, and
the velocity field uj at that moment and another moment
" = e“t; when velocity is u’. Invariance means t'u’ = rjug,.
Equivalently, we may write

/ 1 / I

U=l Ug. (11)
In general, a symmetry transformation moves us around the
space of solutions. That is, all the previous relation means
is that if there is a solution with velocity uy, at time 7, then
there is another solution with velocity field u” at time ¢, i.e.,
in general, u’ and u need not necessarily correspond to the
same initial conditions.

On the other hand, the symmetry holds for large times
t' and ¢). Even if it did not, that would be a convenient
choice for the following reason. The initial time ' =0 is
pushed into the remote past, and the behavior (11) might then
be an exact asymptotic result for a large class of solutions,
meaning irrespectively of their initial conditions. That implies
that #'u’ = #ju; is an actual constant at each point r in space

PHYSICAL REVIEW E 84, 046312 (2011)

depending only on the parameters of the equation and the
boundary conditions.

The constant in question is a vector. To be more specific,
recalling that u’ satisfies V-u’ =0, we need a solenoidal
vector field in steady state that does not depend on initial
conditions; i.e., it is unique. Such a field must respect the
symmetries of the boundary conditions, that is, the symmetries
of the cube. There is no such thing: solenoidal vector fields
have closed integral curves that can always be reversed by
reflections. We deduce then that (11), as long as it is nontrivial,
will always depend to some extend on #;, i.e., on initial
conditions. Thus it is not of much use in this form.

Our reasoning can be used more effectively if it is applied
in statistically defined quantities, that is, correlators of the
velocity field. As mentioned in the Introduction, between this
section and Sec. VI we shall work with correlators defined as
averages over a statistical ensemble. The statistical ensemble
averages are independent of the initial conditions by their
very definition: They are averages over the space of solutions.
Of course, in a problem on turbulence they certainly are the
quantities of interest. The statistical ensemble averages will be
denoted with an overbar.

Equation (11) then holds trivially for no mean flow:
u’ = 0. One then considers general correlators of the velocity
field, u;I (r ,t{)u;2 (rp,25) - - -, and their derivatives. Consider a
correlator Tj’l jzm(F,t/) that involves the velocity field or its
derivatives n times. Let such a tensor field with n velocity
field insertions in the correlation. Symmetry (10) then tells us,
similarly to Eq. (11), that

1
/ _ m /
T} e = = 1 T4 e (12)
Now 1J' T i jz.__(r,t(’)) must be a constant at each point r in

space. If not, then this quantity does depend on 7], i.e., on
the initial conditions. This means that this quantity is not well
defined as a ensemble average, i.e., it mathematically does not
exist and it must be defined in an approximate manner that
does not possess the expected properties or only approximates
them. The reason this may happen is that the system has
not reached a stage where ensemble averages are meaningful;
a priori, some kind of equilibrium is required.

Now, same as with téu{), most of these constant tensor
fields must be zero by being inconsistent with the symmetries
of the cube (especially reflections) and the incompressibility
condition. Certainly everything with at least one solenoidal
index must vanish. This leaves us with the scalars, the tensors
manufactured from them and the Kronecker 8, and correlators
such as 9;u;d;u; with no free solenoidal index.

In order to see an example of how these statements are
realized, consider the correlator #; u{,u,, which is constant
in time. Being constant in time means that it must respect
the symmetries of the cubic domain: It must not change
under reflections of the domain around planes of symmetry
and rotations around axis of symmetry. One should recall
that our correlators are ensemble averages over the whole
of phase space, thus symmetries cannot take us to an other
constant late-time solution: There is no other solution or
we have convergence problems in the very definition of our

averages. It is then easy to see that 7 uy;u), must be equal
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g2 ) e 2 . .
to Six fy ug;ug;(no sum) = 368; 4 Ugtgj> 1., essentially a

scalar. Moreover, by the incompressibility condition V - u’ =
0 we see that the scalar itself must be constant in space.

One should note that the situation very much resembles
that of isotropic, i.e., also homogeneous, turbulence. There is
anisotropy allowed by the problem but it is much less than what
we would, in general, call anisotropy. Thus, we will proceed
by assuming isotropy and analyze what that implies; then, as
isotropy cannot hold at scales comparable to the cubic box size
[, the effects of the boundary eventually play a key role. This
is done in the next section. We close this section by defining
a few important scalars for the description of turbulence, their
symmetry and transformation properties, and their expected
late-time behavior according to our arguments.

The rms value g of the velocity and the dissipation rate &
are defined by ¢> =u-u and ¢ = v dju;0;u;. Moreover, by
K = %qz we shall denote the total kinetic energy per unit
mass. Similar expressions hold for the primed quantities.

Under the symmetry (10) the quantities K’ and &’ transform
as

—3a ./

K' — e K’ and g — e %, (13)

where one should bear in mind that &’ involves V" defined in
Eq. (7). Following again the reasoning given in the previous
paragraphs we conclude that for large times ¢’ the kinetic
energy and dissipation rate should obey

const const

K = Z‘T and 8/ = 73 . (14)

In order to see what this result means back in the variables
of the system (1), we use Egs. (3) and (7) to obtain the
transformations of K and &:

K'=A'+1D2K and & =(A'+1D3e.  (15)

The result is then that the kinetic energy and dissipation rate
in the linearly forced turbulence should at late times become

K = const and & = const. (16)

Presumably, the dissipation length scale L, and the Reynolds
number Re; defined by

3 KZ
L, =— and Re;, = —, a7
gV

and transforming by use of

Re; = Re; and L,=1L,, (18)

should also reach constant values. That is, turbulence should
reach what we have already called the stationary state or phase.

The arguments given above can be rephrased in the actual
time ¢ and the variables of Eq. (1) as follows. We have already
mentioned that shifting time ¢ is a symmetry of Eq. (1). That
is, if u(?) is a solution of this equation then so is u(z + At) for
an arbitrary interval Az. These two solutions do not coincide
because they correspond to the different initial conditions.
On the other hand, we may say that for a certain class of
initial conditions that difference should become irrelevant at
late times, i.e., the two solutions, or at least certain quantities
calculated out of them, will coincide. But this is the same
as stating the obvious fact that static or stationary solutions
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of Eq. (1) exist, without explaining whether such stationary
states are indeed the end point of solutions for an reasonably
large class of initial conditions. In this light, our arguments as
given so far seem rather trivial.

Our arguments are essentially about symmetries. The most
convenient context to discuss them, and possibly the only
context, is that of isotropic turbulence. We shall argue that
the evolution of the system to the stationary phase can be
thought of as the gradual breaking of a larger approximate
symmetry to the smaller exact symmetry (10), which is solely
consistent with the stationary state. That will be realized in
certain convenient cases where one may convince oneself that
one “watches” the system evolving as claimed. By the very
form of Eq. (8) one may guess that standard knowledge from
the freely decaying turbulent flows could prove useful to us.

We start by reviewing certain useful facts about the freely
decaying isotropic turbulence.

V. HOMOGENEOUS AND ISOTROPIC TURBULENCE

A. Important quantities and formulas

Consider homogeneous and isotropic turbulence. The one-
direction rms value of the velocity, q;, does not depend on the
direction, i.e., g> = 3¢?. The two-point correlation function
of the velocity is reduced to a scalar f(r) that depends only
the distance r between the two points: u;(0)u;(r) = ql2 f().
All the information of the two-point correlation is contained
in components u; longitudinal in the direction of separation.
Moreover, the two-point triple correlation of the velocity
can have only longitudinal components and is expressed in
terms of a scalar h(r) by u;(0)u;(0)u;(r) = 5113 h(r). A priori,
all quantities depend on time, and, for that reason, time
dependence is left understood.

Equation (1) with A =0 is the unforced Navier-Stokes
equation describing turbulence in the freely decaying state. The
“Karman-Howarth equation” [19,20] derived from it under the
conditions of homogeneity and isotropy reads

a5, _ 1 0 af 3 28f
g(thf)—rjg[r <Q1h+2‘)611 5)] (19)

In freely decaying turbulence the rate at which energy K is
decreasing equals the dissipation rate ¢, expressing the balance
of total energy in that problem.

K = —¢. (20)

Presumably, this also holds if the viscosity v depends explicitly
on time. This fact will be useful below.

The integral scale, L = [;° fdr, is of the order of magni-
tude of the dissipation length L,. The Taylor microscale A, is
defined by a differential relation involving f:

) Pf

. 10vK
)\.g m o = —1, 1.€., )\,g = e . (21)

For completeness, and as we shall briefly need it later,
we write down the energy balance equation for the spectral
densities of K and . It is a Fourier transform of the Karman-
Howarth equation (19), see, e.g., Ref. [20]:

dE(k) = —3, T (k) — 2vK*E(k). (22)
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The “spectrum” E(k) suitably integrates to give the ki-
netic energy and dissipation rate, K = fooo E(k)dk and ¢ =
2v fooo k*E(k)dk. T (k) is the spectral energy flux and vanishes
for vanishing and infinite wave numbers. Clearly (20) follows
by integrating (22) over all &, although the derivation of energy
balance equations will be discussed in more detail in Sec. VI.

B. Scaling symmetries and power laws

The scaling arguments given in this section are borrowed
from Ref. [21]. The method is an application of the reasoning
presented in Sec. IV.

Consider the Karman-Howarth equation (19). Now perform
the two-parameter scaling transformation

t — e't,
r— ébr,
q — eb_”q, (23)

f—= 1
h—h,

for arbitrary constants ¢ and b. Changing a for fixed ¢
amounts to time evolution from the initial moment #. Similarly,
changing b for fixed r amounts to looking at larger distances.
Under (23) Eq. (19) becomes

0 10 0

g(qff) =35, [r4 <q13 h+ e %20 g} 3_{>:| . (24
Consider high Reynolds numbers. The viscosity term then
can be dropped. We see that the transformation (23) is an
approximate symmetry of Eq. (19) for high Reynolds numbers;
it can be regarded as a symmetry of the system for infinite
Reynolds numbers. Consider, then, quantities of interest such
as the kinetic energy K or the integral scale L (equivalently,
the dissipation length L.). They transforms same as g and r,
respectively.

The one-parameter subgroup of the transformation (23)

such that

(25)

b
y=-
a

is an arbitrary but fixed number, given explicitly by

t — e,
r — e’r,
qg — e’ g, (26)

=1
h—h,

for arbitrary a, leaves the quantities

VL and 77K 27)

invariant.

Note that, in this way, we think of the two-parameter group
(23) as aone-parameter (y ) family of one-parameter subgroups
(26). Presumably, Eq. (24) becomes identical to Eq. (19) if and
only if a — 2b = 0, that is, a — 2ya = 0. This means that the
subgroup ¥ = 1 is an exact symmetry of the freely decaying

2
turbulence. In other words, the larger symmetry (23) for infinite
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Reynolds number breaks down to its subgroup y = % for finite
Reynolds numbers.

Each symmetry (26) is essentially time evolution. Follow-
ing the arguments of Sec. IV we conclude that at adequately
late times

L = const 7 and K = const 12V 72, (28)

Thus, we have obtained certain power laws for the late
behavior of the length scale and kinetic energy in freely
decaying turbulence. The law for the dissipation rate ¢ follows
immediately from Eq. (20),

e = const 2 3. (29)

By use of Eq. (17), then, the law for dissipation length L, turns
out to be consistent with that of L, as it should. The law for
Re; also follows from (17):

Re; = constr? . (30)

Summarizing, each value of y defines a subgroup of the
full symmetry group (23) for high Reynolds. Given a y
the time dependence of various quantities takes the form of
specific power laws. A priori, not fixed without additional
conditions, the exponent y may be given an additional physical
interpretation. Assume that for low wave numbers k the
spectrum E (k) is of the form

E(k) = CK® + o(k®), 31)

for some constants C and o . Given the dimension of E (k) and
k and the constancy of C, this relation is invariant under (26)
if and only if

2
o+3

That is, the subgroup (26) is fixed by the small wave-number
behavior of the spectrum of the specific class of flows. It may
be argued, see, e.g., Ref. [22], that C is actually constant as
longas 1 < o < 4; moreover, the case 0 = 4 holds marginally.
That is, in those cases C is fixed by the initial conditions.

Decay exponents are usually expressed in terms of n =
2 — 2y, which is the kinetic energy decay exponent, K ~
t~". About the value of n there are well-known suggestions.
They depend on the identification of C with quantities that
are conserved under certain conditions. Kolmogorov [23] and
Batchelor [24], based on the conservation of the Loitsyanky
integral [25], derived y = %, ie., n= 17—0. Saffman [26] set
forth the hypothesis that the vorticity, and not the velocity
correlator, is an analytic function in spectral space, by which he
rediscovered the o = 2 spectrum and Birkhoff’s integral [27]
and derived y = % ie.,n= % Experimentally [28,29], both
values of the decay exponent n are acceptable. The valuen = 1
has also been suggested by other theoretical considerations for
high but finite Reynolds numbers [30] and as the limiting value
of the decay exponent for infinitely high Reynolds numbers
[31-33]; this solution first appeared in Ref. [34].

The n = 1 decay solution for the finite Reynolds numbers
of Ref. [30] can be obtained by recalling an observation given
above that for finite Reynolds numbers the symmetry (23),
essentially associated with infinite Reynolds numbers, breaks
downtoitsy = % subgroup at finite Reynolds numbers, which

Yy = (32)
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means n = 1. Presumably, from Eq. (30), the Reynolds number
is constant for this solution.

The n = 1 decay law may also be obtained in another way,
which gives us the chance to make an additional comment on
the analysis presented in this section. The Taylor microscale
Ag transforms as a length, the same as for r, according
to the equation on the left in Eq. (21). This means that
Ag = constant¢”. On the other hand, the equation on the right
in Eq. (21) and the laws (28) and (29) imply A, = constant?2.
The reason there is no discrepancy is because regarding L as
finite and the Reynolds number as virtually infinite for the
symmetry (23) to hold means that A, is virtually zero. Put
differently, if we want to think of the previous analysis as
applying also to high but finite Reynolds numbers, then we
must restrict ourselves to scales much larger than the Taylor
microscale. It is then no accident that the power laws (28) can
also be produced by models deriving from self-similarity of
turbulence with respect to the integral scale L, as we shall
discuss in Sec. VII. On the other hand, if we want finite
Reynolds and to take into account scales of O(A,) or less,
then it must be y = %, ie,n=1.

As it has such a direct impact on the arguments in this
section, one may wonder why the n = 1 decay solution is
not observed experimentally, even for the highest Reynolds
numbers [equivalently, as y = % means o = 1, a small
wave-number spectrum E (k) o k has not been verified]. The
arguments possibly fail where one expects independence from
the initial conditions. That expectation might hold the higher,
but still finite, the Reynolds number is. This is why, in the best
case, the n = 1 solution can possibly be regarded as describing
well decaying turbulence for very high Reynolds numbers.

In the next two subsections we come to the problem of
interest. The discussion parallels, in some sense, our previous
remarks: Going from an infinitely high to any lower Reynolds
number, the larger symmetry (23) breaks down, in this case, to
its exact subgroup y = 0 associated with the linearly forced
turbulence, which is the exact symmetry (10) we started our
discussion with. But, unlike the freely decaying case, in our
problem a large length scale and a Reynolds number scale are
necessarily present, eventually forcing the system toward the
y = 0 evolution. That amounts to reaching the stationary state.

C. Linearly forced isotropic turbulence

In this section we will think of our equations, including
the symmetries and the associated power laws, with a constant
explicitly added in the time coordinate ¢', as in Eq. (9), which
we dropped for convenience since Sec. III.

Consider linearly forced turbulence in the description given
by Eq. (8), which let us state, again:

!

ou + ( ’ V) I 1 \V/ / + 4 2
_ u - u = —— S
ot’ 0 P A(t' +1)

The analog of the transformed Karman-Howarth equation (24)
reads now

3 n 1 [ 4] 5 -2 v 2 3f
(a2 = By ya 29" )
ar )=y, {r ["‘ AT
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We find, again, that the subgroup y = 0 of the group (23), i.e.,
the group (10) or, better, Eq. (9), is an exact symmetry of the
linearly forced turbulence.

It is convenient to impose the condition that ' = 0 when
t = 0. Consistent with this choice is toset#, = A~!and 1, = 0
in the basic transformation (6). The initial condition u’(¢' = 0)
then is equal to up = u(¢ = 0) by the transformation (3). Thus,
we may simply refer to u in either description. More generally,
itis relevant to the late-time behavior that must be the same for
an entire class of initial conditions to think in terms of initial
conditions of O(uy) and constants #, = O(A™).

Consider a flow that starts off with velocities of order 1o and
a box of size [ such that uy > Al. Equivalently, the turnover
time is much smaller than forcing time scale A~! that is,
luy < AL

Given A, [, and v there is a naturally defined Reynolds
number in the problem:

Al?
Rey = —. (33)
v
That is, the condition [/uy << A~' can be rephrased such
that the flow starts off with a very high Reynolds number,
Rer > Rey.

Consider, then, times ¢ such that [/ug <t <1, =
O(A™"). Looking at the Navier-Stokes equation above, we
understand that for those times the turbulent flow is merely
freely decaying with constant viscosity v. If all previous
inequalities hold strongly enough, then there will be time for
the flow to evolve adequately toward its developed stage. This
means that the quantities describing turbulence will evolve
according to the power laws (28), (29), and (30), only now for
primed quantities, and 7 is replaced by ¢’ 4+ constant. During
this stage the Reynolds number decreases.

When ¢’ becomes of the order A~!, “linear forcing” kicks in.
Atthis stage, the large Reynolds two-dimensional approximate
symmetry (23) applied in the present variables produces
evolution laws that are necessarily similar to those of the freely
decaying case for the dimensionful quantities,

L’ = const ¢,

K’ = const 1772, (34)
& = const’? 73,

while the dimensionless Reynolds number has a different
power law due to the time-varying v':

Re) = const 7’ . (35)

The constant £, = O(A~!) has been dropped for simplicity as,
after all, these formulas hold when ¢’ is relatively large. Now
these equations are, at best, a very rough description of reality,
but they give us some quantitative sense. (They are in a little
better shape if Re, is moderately large itself.) y should vary
and the state of the flow can be thought of as going through
phases of different values of . Now the main difference with
the freely decaying case is that the forcing itself lies “hidden”
in the time-dependent viscosity. Therefore, these power laws,
which were obtained by ignoring the viscosity term in the
Navier-Stokes equation, cannot be true for various values of
y, as is the case in the freely decaying turbulence. If they
were true, it would simply mean that the flow is still at stages
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where forcing is negligible. If the forcing and, therefore, the
time-dependent viscosity term are present and operating, then
we are left with a smaller symmetry in the problem. This is the
subgroup y = 0 of Eq. (23) that is an exact symmetry of the
system. That is, the workings of the time-dependent viscosity
term will eventually break down the larger symmetry to that
smaller exact symmetry given by the y = 0 subgroup and
bring the system to the associated state, to which we now turn.

Let us first briefly summarize. There is a symmetry existing
in the system for high Reynolds numbers, which, a priori,
allows for arbitrary values of the parameter y. This symmetry
breaks down to its subgroup y = 0 when the Reynolds number
drops low enough. This is an exact symmetry of the system
and, therefore, always holds. The final state must be the
one that respects that exact symmetry. The power laws (34)
and (35) imply that L’ and Re/, are constant, &’ = const#'~>
and K’ = const#'~2. The transformations (15) and (18), the
original variables of Eq. (1), show that everything, that is, K,
g, Ly, and Re;, is constant. We have reached the stationary
state. K’ and ¢’, which are time dependent in the description
(8) of the problem, are related by Eq. (20), written for the
primed quantities as follows:

dK’

dt’
The (34) and (35) power laws for y = 0 and the transforma-
tions (15) translate that relation to

=—¢. (36)

2AK = ¢, 37

that is, we obtain the stationary state balance of energy
production against dissipation.

D. Effects of the finite domain

In the previous subsection we saw the system reaching the
stationary state, arguing as follows: In the decaying turbulence
description (8), the forcing exists in the time-dependent viscos-
ity. Therefore, one cannot draw even approximate conclusions
about the late-time state from the large Reynolds symmetry
(23) that ignores that viscosity term. The system should
eventually conform only to the exact symmetry present in the
problem and reach the state it induces; in the original variables
this is the stationary state. Starting from high Reynolds
numbers, one may then view the evolution of the system toward
the stationary state as the breaking of a larger symmetry to a
smaller symmetry. Here we revisit the argument from the point
of view of the boundary conditions.

Note, first, a very interesting thing. Formally, from Eq. (32),
the value y = 0 corresponds to o = co. This indicates that
the power-law behavior of the spectrum E(k) for small k
degenerates and should be replaced by some other, much faster,
decreasing law, perhaps some kind of exponential. That would
be the behavior of a continuous spectrum applied in a physical
system that lives in a finite region in space.

There is a good reason why we expect to see that. The
system (1), or Eq. (8), is solved in a cubic domain, a fact we
used in Sec. IV, but we did not imply there that we would not let
its size become arbitrarily large or investigate what that would
mean. We discuss now why an infinite size is meaningless or,
put differently, that this limit possesses a meaning that differs
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entirely from the one expected. In linear forcing there is no
intrinsic large length scale. Such a scale must be provided
by a domain with a finite size. One may only then construct
a scale for the Reynolds number at the late-time state under
this forcing: This is given by the Rey = Al?/v defined in
Eq. (33). That is, in the linear forcing a domain size [ = co
means we deal with the special state where Re = oo. This is
certainly not the case in the freely decaying turbulence and
neither is the case in the limited bandwidth forcing schemes.
A different perspective is obtained if we think that large /
essentially means a large Al compared with any specific initial
condition uy. An infinitely large / is then equivalent to initial
conditions u infinitely close to zero. This means that it will
take forever to reach a state with an rms value of velocity
of order Al. There will be no such thing as a late-time state,
meaning, of course, a state established within a finite period
of time. [A finite domain size means, presumably, that there
are no wave numbers k between O(I~!) and zero, therefore,
any continuous approximation of the spectrum FE(k) must
fall very rapidly for kI smaller than O(1).] But perhaps the
most straightforward way to understand the necessity of the
finiteness of the domain is to revisit our previous arguments
based on scaling symmetries.

We concluded earlier that linearly forced turbulence will
eventually reach a state such that the Reynolds number Re; and
the integral length scale L are constant. [This holds in either
description we have used due to the transformations (18).]
This is now possible only if there are are available constants
in the problem to set the scale for these quantities. As there
is no large length scale in the dynamical statement of linearly
forcing, as opposed to the limited bandwidth schemes, this
is provided by the boundary conditions and, specifically, a
necessarily finite domain size /. An infinitely large domain
would simply mean that there would be no scale to set the
scale of the constant L, that is, there would be no such thing
as a stationary state. Observation through the DNS shows that,
indeed, L, >~ [, and, in fact, within a few percentage points of
error [16] after a transient stage of evolution, L, was defined
in Eq. (17). The existence of the domain size / implies, as
we have already mentioned, a scale for the Reynolds number,
the number Re4. By L, >~ one expects that Re; =~ }TReA.
Observation verifies this within a few percentage points [17].
These results are obtained only after time averaging the time
series within the stationary state due to the relatively large
fluctuations to which we will turn soon.

There is, of course, an inverse way to look at the issues
discussed above. Let us take as given that the flow lives in
a finite domain of size /. There is, then, a major implication
following this fact. The presence of a fixed length / means that
only the subgroup b = 0 (i.e., y = 0) of the transformation
(23) could possibly be a symmetry of the system, regardless
of its dynamical equations. Thus, an alternative way to look at
the evolution of the system toward a late-time state is that the
latter is reached when the integral scale becomes comparable
to the domain size /. The full group (23) then cannot even be a
potential symmetry, even if it could be regarded as acceptable
dynamically for adequately large Rey. Its y = 0 subgroup
that is consistent with a fixed length will control the situation.
Of course, the y = 0 subgroup is an exact symmetry of the
dynamical equations themselves, suggesting, from another
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point of view, that a finite domain is a most natural, if not
necessary, thing in this system.

We conclude that the finiteness of the domain emerges as a
crucial factor in understanding the flow evolving to a stationary
state. The domain that we often refer to as the box now should
be understood more carefully in terms of periodicity. This is
what we discuss next.

VI. THE STATE OF ISOTROPY

In the previous section we restricted ourselves to flows
obeying the conditions of homogeneity and isotropy. Let us
review what that involves. Contract (1) with u and average.
After a little rearranging we have

K

o = —e+2AK +vV?K -V -],

2
2 p

Homogeneity alone makes all locally defined correlators, such
as K or J;, independent of the position in space. That is, the
last two terms in the last equation vanish. Of course, isotropy
means homogeneity, so if the flow is assumed isotropic those
two terms again go away. We are then left with

(38)

K = —¢ +2AK. (39)

In a stationary state we get ¢ = 2AK, whose form we already
anticipated on dimensional grounds, deriving the final value
(33) of the Reynolds number in terms of the box size [.

We should now recall that the box is a cubic domain together
with periodic boundary conditions we impose on all fields. The
periodic boundary conditions can be given some enlightening
interpretations. One way to think of them is that we solve
the Navier-Stokes equations in an infinite medium imposing
periodicity / on the field u(x,y,z) in all three directions x, y,
and z. That, in turn, means that homogeneity is not, a priori,
broken: A box such that u(x,y,z) satisfies periodic boundary
conditions can be drawn anywhere in the infinite medium. By
the periodicity we apparently restrict ourselves to special kinds
of flow such that there is an upper bound to the size of eddies
or any spatially periodic structure in it.

Another way to think of the periodic boundary conditions
is to interpret them as mere single-valued-ness of the fields
while identifying the points of the boundary of the cube where
the fields are supposed to be equal. This may be pictured
if we go one dimension down. If we take a square and
identify the opposite sides, we get a topological torus. A
torus is a perfectly homogeneous space without boundary that
is nontrivial globally and is not isotropic. Imposing periodic
boundary conditions on the cube means we essentially solve
Navier-Stokes equations on the three-dimensional analog of
such a space, the three-torus.

An implication of periodicity and its peculiar nature is
that an analog of Eq. (39) holds without assuming pointwise
homogeneity of the flow. Let us denote by (X) the spatial
average over the volume of the box of a quantity! with an

That is, for example, (K) means simply (%u - u) not (%u -u). This
is a little confusing but allows for a more compact notation.
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ensemble average X. Averaging this way, we get an equation
similar to Eq. (38) for box averages
d(K)

{vWK —J} - da. (40)
Voox bdy
The last term is a surface integral over the boundary surface
of the box. This integral is a sum of

/ K — J)dydz — / W K — J)dydz  (41)
x=I x=0

plus two more analogous pairs of terms for the other two
directions. As all fields are manufactured from correlations of
the field u that satisfies periodicity u(x,y,z) = u(x +1,y,z),
and the same for the other two directions, any pair of terms such
as (41) vanishes exactly and identically. In other words, even
if pointwise homogeneity is not assumed, periodicity implies
that

d(K) = —(e) + 2A(K) (42)

dt

must hold exactly.

Alternatively, the vanishing of the boundary term in
Eq. (40) follows automatically under the interpretation that
we solve our problem on a three-torus: There simply is no
boundary, as x =0 and x =1 describe the same surface
somewhere on the three-torus. Whatever the interpretation
of the boundary conditions, one ends up with (42) without
assuming homogeneity of the flow.

This is a good thing to know. The box-averaged correlators
(X) are the actual observables in the DNS. What is their
relation to the ensemble averages X? Assuming that X are
meaningful and under an ergodic hypothesis, X are represented
by averaging (X) over suitable and adequately large intervals
of time. That means, first, that although the motion of (X)) is not
the same as that of X it should nonetheless be bounded and
appear as fluctuating around hypothetical stationary values.
This is what is observed (Fig. 1). Those values should, of
course, be the values of the correlators X.

Contemplating the far more complicated motion of the
correlators (X) compared to that of X, one quickly realizes
that both kinds of correlators obey the same basic dynamical
equations. Thus, their difference lies somewhere else. The
simplicity of the motion of X follows from their independence
from the initial conditions of the flow and the symmetries
of the dynamical equations and of the domain. Correlators
(X) are not, a priori, independent of the initial conditions
of the flow and none of the arguments of Sec. IV apply to
them. Therefore, there are many more, and more complicated,
solutions (X) than X.

In particular, in Sec. IV it was emphasized that the
symmetries of the cube, combined with the symmetry (10),
force a fair amount of isotropy on the solutions X. That will
hold only on the average for the correlators (X). This is the
actual result of numerical simulations (Fig. 2).

We consider the fluctuations of measures of isotropy
important for the following reason. The “fair amount of
isotropy” exhibited by X is not so harmless itself: Reasonably,
any anisotropy is inherited by the correlators (X) and it
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FIG. 2. Time evolution of the diagonal components of the
normalized Reynolds stresses, (u,ity)/q> (no sum) from the same
run producing the time series in Fig. 1.

is enhanced in their description of turbulence. The origin
of any enhancement of anisotropy is that in linear forcing
there is no intrinsic large scale at which we feed the flow
energy in some isotropic manner; the large scales are set
by the domain itself and the scales comparable to its size
are necessarily not isotropic. Subsequently, anisotropy is
produced and maintained at those and smaller scales through
forcing and cascade. Although the motion of the correlators
X suggests that the system cannot be kicked off balance, the
produced anisotropy will cause relatively large fluctuations of
all quantities (X) describing turbulence.

In the next section we will try to lend some quantitative
support to this intuitive picture. If deviations from isotropy
are related to the fluctuations of all quantities, then any
fluctuations should vanish in a perfectly isotropic setting. That
may give us a sense of what happens when those fluctuations
are continually generated. As we shall see the analysis is
interesting in its own right as it reveals rather important
dynamical properties of linearly forced turbulence.

VII. SELF-PRESERVING TURBULENCE AND STABILITY
OF STATIONARITY

Studying the fluctuations around the stationary state is
equivalent to studying the stability of that state as a fixed point
of solutions, in the statistical sense. In fact, this is an alternative
way to look at the main problem we have been concerned with,
the stationary state as an attractor of solutions. Of course, such
an analysis is a very difficult thing to do unless we resort to
some suitable simplification.

According to the plan set at the end of the previous
section, we shall assume that the flow is isotropic. Therefore,
all correlators involved, which can be thought of either as
ensemble correlators X or box averages (X), are assumed to
have the properties required by that condition. We may then
investigate the fate of any deviations away from the stationary
state if the flow evolves remaining isotropic.

The evolution laws derived in the previous sections can
be alternatively derived in isotropic turbulence from models
relating the kinetic energy K and dissipation rate . These
models can be deduced on dimensional grounds or, more
systematically, by self-similarity arguments, which are fairly
equivalent to the scaling arguments given here. The latter date
to the work of von Karman and Howarth [35] and Batchelor
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[24]; see also Refs. [36,37]. One looks for self-similar solutions
of the equations with respect to a single length scale L(z), “self-
preserving” turbulent flows. Assuming that the larger scales of
the flow evolve in such a self-preserving manner, one chooses
L(t) to be the integral scale and one obtains a closed system
of equations for the variables K and ¢. That simple model can
also be regarded as describing self-preserving turbulence of
all scales but for infinitely high Reynolds numbers, essentially
for inviscid flow.

One can straightforwardly apply the same arguments in
the linearly forced turbulence. The spectral energy balance
equation (22) becomes

& E(k) = —0; T(k) — 2vk* E(k) + 2AE(k). 43)
The origin of the additional term should be clear. The
self-preserving development of the larger scales of the flow
then implies, via standard steps that can be found in, e.g.,
Refs. [36,37], the model equation

de &2
o= —cg‘z + ¢y Ae, (44)
where ¢; = 3 and C2 is a dimensionless constant. Apart from
the value of ¢y, this equation could also have been guessed
on dimensional grounds on requiring its right-hand side to be
built from ¢ and K and A and be linear in A.

Integrating Eq. (43) over all wave numbers, we obtain,
again, the exact equation (39), which we show here for
convenience:

K +2AK (45)
—_— = —€ .
dt

The system of Eqs. (45) and (44) is consistent with a static
solution only for 2C# = c;. The special case of C2 = ¢;/2 =
3/2, predicted by large-scale self-preservation, implies that
L. = const at all times the model holds. This is consistent
with the general idea regarding it. In Sec. VIII the large-scale
self-preservation model [Eq. (44)] and the value C2 = 3/2
will emerge again from a different perspective. The model
can be easily solved exactly and indeed predicts that the flow
approaches stationarity exponentially fast for all CA > 1 (the
case CA = 1 is trivially consistent with stationarity).

A more elaborate analysis of the evolution of isotropic
turbulence was presented in Refs. [30,31,38,39]. In those
works, the self-similarity hypothesis is applied at the viscous
equations of the flow, i.e., self-preservation is required to be
true for all scales of turbulence for finite Reynolds. In the
terminology of Ref. [30], self-preservation is complete. An
implication of this requirement is that the self-similarity scale
is the Taylor microscale A,.

From the point of view of linearly forced turbulence, all that
sounds very relevant and interesting for the following reasons.
First, the linearly forced turbulence comes to the intelligible
part of its course when its Reynolds number approaches the
value (33), which need not be very high at all; second, energy is
generated uniformly at all points in the domain and all scales
play a role in approaching or maintaining stationarity; and
third, in this problem there is a natural scale for the Taylor
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length A,. It is the scale at which energy production balances
dissipation in spectral space, as can be seen by Eq. (43):

Aa =\/§. (46)

This is designated as a Taylor microscale because the stationary
state value of the Taylor microscale, Agy, is of that order:

Aes = V5ha. 47

This follows from the definition (21) of A, and the stationary
state total balance of energy production balances dissipation,
2AK = ¢. For these reasons, the Taylor microscale may
be regarded as playing a particularly significant role in the
dynamical aspects of linear forcing, perhaps more significant
than in the freely decaying case. [On the other hand, as
everything turns out to be approaching constancy, eventually
the integral scale might be used as a self-similarity scale, a
choice associated with the model (44), providing a more crude
and late-time description of the evolution of the system.] In
any case, this choice provides a closed two-equation model
with some interesting properties.

We may then proceed as follows. There is another equation
that we may use along with Eq. (45). One way to derive it is
to start from the Karman-Howarth equation for linearly forced
isotropic turbulence:

d 10 0

5@ ==5 [r“ (qf h+ 20t 8—{)] +24q1f, (48)
applying definitions (50) below. [The spectral energy balance
equation (43) is a Fourier transform of Eq. (19).] Alternatively,
and more instructively, we can do everything from scratch by
differentiating ¢ with respect to time using its very definition as
an ensemble or box-average correlator. Employing the Navier-
Stokes equation (1) and applying the condition of isotropy on
any arising correlator, one then arrives at

de 78| 5, 7Gé’
— = — — = 4 2As, 49
TR € 5K + 2Ae (49)

where S (the velocity gradient distribution skewness) and G
are defined by
;0%h L0V

S =2, 93| G =, o |, (50)
where f and h are the two-point double and triple point
correlations of the velocity defined in Sec. V A. Equation (49)
can also be derived by multiplying Eq. (43) by 2vk? and using
formulas equivalent to Egs. (50) and (21) in wave-number
space.

The system of Egs. (45) and (49) is not closed, and the
dependence of S and G on K and ¢ is unknown. Assume
now that at some moment #;, the flow becomes self-similar
with a (time-dependent) similarity scale Ag. This means f and
g are functions of the dimensionless coordinate r/A( alone,
modulo a possible dependence on the initial conditions at #,.
Equation (21) now tells us that Ao/A; must be a constant,
depending only on the initial conditions at #,. Thus, the
similarity scale is indeed the Taylor microscale. From Eq. (50)
we then have that S and G are constant and equal to the values
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they have at 75: S = Sp and G = Gy. The system of Eqgs. (45)
and (49) is now closed and we may study it.

Let us denote the stationary state values of the dissipation
rate and kinetic energy by &; and K. Of course, they are related
by e, = 2AK;. We study the stability properties of € = ¢, and
K = K; as a complete self-preserving solution of the system
of Egs. (45) and (49).

It will be convenient to define the quantity

7Go
= —. 51
T (G
First, Eq. (49) implies that
3V15
el =AY 2" (g 1), (52)
7180l
which implies that
g > 1.

It is useful to relate the value of g to the Taylor-scale Reynolds

number Re; = (23—0ReL)%. From Eq. (17) we find that its
stationary value Re,, reads

Ress = o (g — 1) (53)
Cs = 7o 88— b
71Sol
Define now small fluctuations &€ and ¢ of ¢ and K around
their stationary values:

e=¢e(+8),
Inserting these expressions into Eqgs. (45) and (49) and keeping
only linear terms we obtain the following system of equations:

% _ —A(l +g)§ +24g¢,

dt
 _ 2A& +2A
dr — £

Its eigenvalues I read

r=1A[-(g— )+ /g=Dg =9 (56)

By g > 1 we see that the real part of both eigenvalues is
always negative. Fluctuations around the stationary state die
out exponentially fast. That is, modulo finite domain effects,
the stationary state is stable as a complete self-preserving
isotropic solution. We may also view this result as providing
further evidence that the stationary state is the natural final
state of the linearly forced turbulence. [Presumably, one may
observe that the exponentially fast approach to the stationary
state is also the prediction of the simpler model (44).]

The previous analysis can be alternatively understood as
follows. In order to derive the previous results we have
assumed perfect isotropy. A reasonable assumption about the
deviations from isotropy is that they originate from scales of
order /. This means that, according to our conclusions in the
previous section, the same can be said about the fluctuations
around the stationary state. That is, one may attribute the
generation of fluctuations to the interaction of the larger eddies
with the periodicity, i.e., the restriction to their size. Through
both forcing and cascade, fluctuations then are generated at all
scales from / down to a certain scale where isotropy becomes
a good approximation. There things differ. We may define

K =K,(1+2). (54)

(55)
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correlators as spatial averages (X)y over volumes V smaller
than that maximum isotropic scale, i.e., within these volumes
turbulence is isotropic (meaning homogeneity as well) to a
good approximation, and then K and ¢, understood as spatial
averages (X)y, obey similar equations to those studied above.
The entire previous analysis then works. This means, finally,
that at adequately small scales the fluctuations are strongly
suppressed but at all higher scales are maintained through
forcing and cascade. The maximum isotropic scale should be
(very) roughly related to the characteristic Taylor microscale of
linear forcing A4 = (v/ A)%, as below that scale the process of
energy dissipation becomes stronger than energy production.

We may investigate the linear system (55) a bit further.
Though this system is meant to serve us mainly for qualitative
considerations, regarding the stability of the constant solution
K = K; and ¢ = g, there are some interesting remarks to be
made about its solutions on the quantitative side. In the range
1 < g < 9the eigenvalues I" are complex numbers. If we take
for definiteness |Sp| = 0.5, this means that when Re; < 69
the fluctuations are damped oscillations. [Presumably, this
emergence of oscillations is a qualitative difference between
the complete self-preservation model and the simpler model
(44).] Inserting the solutions ¢ = &ye'" and & = &ye'" for
positive frequency into any of Egs. (55) we obtain the phase
difference and the relative amplitude of ¢ and K:

& =/ge ¢, (57)

where ¢ is given by

tan ¢ = —v(g—l)(Q—g)‘ (58)
g+3
As expected, the dissipation ¢ evolves with a phase delay with
respect to the kinetic energy K and the energy production
2AK. This corresponds to a time delay ¢ /|ImI"|. The period
of these damped oscillations is, of course, 2 /|ImI|.

In Fig. 1 we plotted the energy production 2AK and
dissipation rate ¢ against time in units of (3A)~!. Let us now
shift the evolution of dissipation by one unit of time to offset
its delay. The result is given in Fig. 3. One observes that,
after that shift, the complicated oscillations appear in phase to
a considerable degree of accuracy. Curiously, the time delay
¢/|ImI’| in units of (3A)~! decreases from 1.5 to 0.5 in the
range 1 < g < 9. Moreover, the period 27/|[ImI"| is roughly
an order of magnitude higher than (3A4)~! for most values of
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FIG. 3. The time evolution of the dissipation rate ¢, shown in
Fig. 1, is shifted in this figure by one unit of dimensionless time 3 Az.
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g, which as a number is not in disagreement with the picture
in Fig. 3. Given that these numbers derive from a model that
does not interact with the source of the fluctuations, it seems
interesting that the oscillations it implies may encapsulate
certain features of the actual fluctuation. There certainly is
no identification between the actual fluctuations and those
oscillations. For example, when g ~ 9, that is, Re;; ~ 70,
the damped oscillations are replaced by a purely decaying
exponential, a qualitative change in the behavior that cannot
be traced in the DNS results of Refs. [14,16,17].

The previous remarks derive from the quantitative charac-
teristics of small fluctuations, and we may have overextended
the applicability of the related formulas. Arbitrary fluctuations
are described by the solutions of the full nonlinear model
[Egs. (45) and (49)]. This needs to be solved numerically. In
terms of the dimensionless (hatted) kinetic energy, dissipation
rate and time, defined, respectively, by K = K K , € =68,
and 7 = 2At, the nonlinear model reads

aK ¢4+ K
~ = —& )
dt
(59)
dé—( - D& - éz+g~
ai ¢ Sk

The parameter g is related to Re;; by Eq. (53) and we again
take for definiteness |Sy| = 0.5.

The system (59) is solved using the software MATHEMATICA.
We consider a few specific cases. First, the difference of the
initial conditions from the stationary state values is such to
imitate the size of the observed fluctuations. This is shown in
Fig. 4(a). Second, the kinetic energy K and dissipation rate
& start off from very close to zero, shown in Fig. 4(b). For
those two cases we have chosen an adequately small Reynolds
number so oscillations are visible. Finally, we consider the
effect of higher Reynolds numbers. An evolution of K and &
for Re;; ~ 85 is shown in Fig. 4(c).

The result is that the picture does not differ qualitatively
from the one obtained from the small fluctuations. In Figs. 4(a)
and 4(b), the time delay of the dissipation relative to the kinetic
energy and the period of the damping appear essentially as
predicted previously, and the oscillations of the dissipation are
consistently larger as implied by Eq. (57). On the other hand,
Fig. 4(b) shows a particular behavior of nonlinear solutions: If
the initial condition is far away from the stationary state values
the system undergoes large fluctuations before settling to those
values. Figure 4(c) shows that by increasing the Reynolds
number, any wiggling of the curves due to oscillatory behavior
diminishes to extinction, which is, again, what we expected.

VIII. SUMMARY AND DISCUSSION

Direct numerical simulations of turbulence that is forced
under the linear forcing scheme show a stationary late-time
state that is not entirely expected. The stationary state is
essentially quasistationary: all quantities have relatively large
fluctuations though their time average can be predicted fairly
well. In the present work we have attempted to understand
how these phenomena are rooted in the properties of the
system. The first revealing thing about it is that it can be trans-
formed to a system of decaying turbulence with decreasing
viscosity v’ = v(At")~!. The transformation involving a certain
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FIG. 4. Time evolution of the kinetic energy (solid line) and
dissipation (dashed line) normalized by their stationary state values
from numerical solutions of the system (59). (a) Initial condi-
tions K(0) = 1.3 and £(0) = 1.2 for g = 2.2, that is, Re;; ~ 10.
(b) K(0)=0.01 and 2(0)=0.01 for the same value of g.
(¢) K(0)=0.01 and £(0) = 0.01 for g = 9.9, that is, Re;, ~ 85.

transformation of time ¢+ — ¢’ and a subsequent transforma-
tion of all other quantities. One obtains, then, nothing but
an equivalent description of the original system, and one
can transform it back to the original description by given
transformation rules.” That “new” system is interesting in its
own right. One may show that at late times it evolves to a
state where the total turbulent energy decays with time but
the Reynolds number and integral length scale are constant,
which may be shown quite elegantly. The formal similarity
between the “new” system and the freely decaying turbulence

2The viscosity v’ can never vanish: This may happen only for ¢’ =
0o, where the transformation between the two descriptions becomes
singular. Thus, the alternative description of our problem does not
apply to questions involving the actual limit # — oco. We do not need
such a limit anywhere.
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allows us to use scaling symmetry considerations familiar in
the latter when studying late-time evolution laws; see, e.g.,
Ref. [21] and references therein. [Needless to say, all these
conclusions always refer to “late times,” or a fully developed
state of turbulence, in order for the system to have evolved
away from the initial conditions adequately. This is necessary
for the correlators to behave according to the general properties
of the dynamical equations and the boundary conditions (or,
perhaps, on the class of initial conditions) and not according
to very particular initial conditions.]

First, if we drop the viscosity term, time dependent or not,
the isotropic turbulence equations possess a two-dimensional
scaling symmetry. From that symmetry one derives evolution
for virtually any correlator one wants; the results are the
well-known power laws of the freely decaying turbulence [21].
These power laws are not invariant under the full symmetry.
They are determined when a single exponent is determined,;
that exponent fixes the one-dimensional subgroup of full
symmetry under which they are invariant. That subgroup, i.e.,
the specific exponents of the power laws, are picked by the
boundary and/or the type of the initial conditions and not
by the dynamical equations. The subtle thing is that these
results literary hold for the the Euler equations, which are
not a well-defined limit of the Navier-Stokes for Reynolds
numbers approaching infinity. Nonetheless, the results agree
with observation even for moderately large Reynolds numbers.
By the empirical fact that things work, the two-dimensional
symmetry group can be regarded as an approximate symmetry
for large but finite Reynolds numbers.

Second, when the viscosity term is not dropped, a case we
must consider otherwise we restrict ourselves to situations such
that the forcing is negligible, a single subgroup is picked, as
an exact symmetry of the viscous equations. On the freely
decaying side, the state specified this way was described
by Ref. [30] and it is closely related to that described in
Refs. [38,39]. It amounts to constant Reynolds number and
kinetic energy decaying as ¢~!. Though such a decay has not
been observed, the state is of theoretical value. On the linearly
forced side, in its description as decaying turbulence with
decreasing viscosity v/ = v(At’)~!, that state was mentioned
above: Its Reynolds number and integral length scale are
constant, and the kinetic energy decays as t'~> and the
dissipation as '~3. Now, though its freely decaying counterpart
may be regarded nearly as unphysical, that state describes
stationarity in linear forcing: If we transform back to the
original variables, where there is an explicit force term, all
quantities of interest are constant. The Reynolds number is
of order Re4 = Al?/v, where [ is the domain size. One case
where the total evolution can be understood is one that starts
from a much higher Reynolds number than Re4. The settling
of the system to stationarity can be understood as the breaking
of the two-dimensional symmetry, which approximately holds
at large Reynolds numbers, to its subgroup, which is an exact
symmetry of the full viscous equations of isotropic turbulence.

It was mentioned above that in both descriptions of our
problem, the integral scale L becomes constant in the late-
time state. Lacking an intrinsic large scale at the level of the
dynamical equations, linear forcing requires the scale to be
set by the boundary conditions: Indeed, the domain size [ sets
the scale of the integral scale. For that reason, one cannot
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imagine linear forcing in an infinite domain, as one does with
freely decaying or limited bandwidth forced turbulence. There
would be no way to set the scale of the constant L at late times,
thus there could no late-time state of stationarity, i.e., no way
to approach such a state in a finite time. Conversely, given a
finite domain, its size breaks the two-dimensional symmetry
mentioned in the previous paragraph down to its subgroup that
is in exact symmetry to the dynamical equations. Therefore,
the late-time state of the system must be the stationary state
described above. These facts underline the importance of the
finite domain in this problem.

Implicit in our comments above is the assumption that
turbulence is isotropic. The reason is threefold. First, it
is far more convenient to analyze the simpler setting and
realize what might change when there are deviations from
it. Second, although the symmetries we have used hold at the
level of the Navier-Stokes equations, which means that these
symmetries are inherited by all dynamical equations for the
correlators, it feels like an excessively strong assumption that
our arguments, which involve the assumption of independence
from the initial conditions, apply also to the general anisotropic
turbulence. Third, there is a fair amount of local isotropy
imposed by the solenoidal nature of the velocity field and
the symmetries of the cubic domain, as discussed in Sec. IV.
Nonetheless, the isotropy is broken at the domain size scale.
The periodic boundary conditions make sure that the flow
lives in an everywhere homogeneous space, a topological
three-torus, but isotropy is broken at the scale of its size, as
one can certainly distinguish directions at the scale of the
domain size. We have mentioned already that linear forcing
has no intrinsic large length scale and that the finiteness
of that anisotropic domain is a major component of the
forcing. Therefore, anisotropies are generated and, by cascade,
transferred at all smaller scales down, perhaps, to the Taylor
scale eddies, where dissipation wins over the forcing. This is
our argument for the origin of the rather significant deviations
from isotropy observed in direct numerical simulations; it is
rooted in the otherwise necessary finiteness of the domain.
Now, ignoring the effects of the large-scale anisotropies by
assuming isotropic turbulence, we found a late-time state
where everything was constant, i.e., we got statistical staticity,
actually, rather than stationarity. That was obtained by working
with the statistical ensemble-averaged correlators, which are
assumed not to depend on initial conditions; that is the great
simplification allowing us to proceed without dealing with
all the details of the Navier-Stokes equations. The actual
DNS observables, the box-averaged correlators, are actually
fluctuating. It must be, then, that the mathematical condition
of independence from the initial conditions imposed on the
ensemble-averaged correlators is partially weakened as a
physically viable condition by the large-scale breaking of
isotropy in the domain. We then conclude that the rather
significant fluctuations observed in the stationarity state in the
numerical simulations are due to the large-scale anisotropies,
i.e., the very finiteness of the domain in this problem.

The last argument is possibly strengthened, and we also
gain some different understanding of our problem, if we
proceed and simplify it to a soluble model. First, as mentioned
above, the stationary state as appears in the description of
decaying turbulence with decreasing viscosity is an analog
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of a freely decaying turbulence state described in Ref. [30];
see also references therein. That state was found by applying
self-similarity of isotropic turbulence holding at all scales,
called complete self-preservation of isotropic turbulence. That
requires the similarity scale to be the Taylor microscale.
Second, we observe that in the linear forcing there is a natural
scale for the Taylor microscale, A4 = (v/ A)%. This is, in fact,
the only intrinsic length scale in the problem, i.e., without
bringing in the finite domain. Complete self-preservation then
sounds all the more relevant and attractive and we derive the
corresponding model. It turns out that the model possesses
a single stable fixed point. Therefore, assuming isotropy and
reducing the unknowns by self-similarity, the stationary state is
found again as the late-time state of our system, in the sense of a
state where everything is constant. One way to interpret this re-
sult, is to say that is provides more evidence that isotropy forces
any deviations from stationarity to vanish. Of course, one may
attribute that to the effect of self-similarity reduction, and we
have no good argument against such an objection. Nonetheless,
the model is indeed unaware of the anisotropies generated
at the larger scales and is consistent with our conclusions
based on the symmetry arguments. There are some additional
properties of the linear forced turbulence associated with the
effects of the finite domain as well as with its formal affinity to
freely decaying turbulence, which we may briefly discuss here.

Denote by Au; the longitudinal velocity difference. The
second- and third-order structure functions are related to
the correlation functions f and h, introduced in Sec. V,
by (Aup)? = 2¢*(1 — f) and (Au;)? = 6¢;h. For adequately
high Reynolds numbers there is a range of distances (the
inertial range) where (Au;)? = Ca(er)*? and where C, is
a constant. Consider, first, decaying turbulence. It evolves
according to the power laws (28), and the integral scale is
proportional to ¢7. The law for ¢ can be deduced. It is then
straightforward to show that they satisfy the K — & model
equation [Eq. (44)] for

32
2=y’

and, of course, A =0. Using the Karman-Howarth
equation (19) it is then straightforward to show [40,41] that
for very high but finite Reynolds numbers, and within the
inertial range [more specifically as long as /A, is a number
of O(1)], the two-thirds law of the second-order structure
function implies specific finite Reynolds number corrections
to the four-fifths law of the third-order structure function, of
O(Re; *?). The result is [40,41]

— 4 5% 153 2 /r\?
(Aup? = ——er x |1 — 2222C.CoRe; * (—
5 A

ZS%CR_% Ak 61
G ex(5) ] @

Consider the same question in the linearly forced turbu-
lence. One may follow the same steps, starting from the
Karman-Howarth equation with linear forcing, Eq. (48). One
finds a result entirely similar to Eq. (61) on replacing

Kde 3AK

C - . 62
i b (62)

(60)

&
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Observe now that if we think of the right-hand side of this
substitution as a constant, then we rediscover the model
equation (44); the constant is what we denoted there by
CA. Equation (44) is derived assuming self-similarity (self-
preservation) of the larger scales of turbulence with respect
to the integral scale L for high Reynolds numbers in both
the linearly forced (A # 0) and freely decaying case (A = 0).
In all, by self-preservation we obtain a similar result of the
form (61) in both kinds of turbulence, differing only in the
value of the constants C* and C.. On the linearly forced
side, self-preservation requires C f = 3/2 and Egs. (44) and
(45) require that L = const. At first sight there is no such
restriction on the freely decaying side. In all, there appears
to be a correspondence between linearly forced and freely
decaying turbulence, though this correspondence appears
inexact.

If we require C2A = C,, then from Eq. (60) we have that
y = 0. In other words, if the decaying turbulence evolves
according to L ~ const (and K ~ t72), then its structure
function expression (61) is exactly similar to that of the linearly
forced turbulence. That is, the correspondence between the two
flows can be exact.

The K ~ t~2 evolution is too fast compared to the usually
observed decay laws, discussed in Sec. V B. Such power laws
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can be reproduced if we choose the constant C, to differ from
3/2, a fact regarded as an imperfection of the correspondence
in Ref. [15], where it was first pointed out. On the other hand,
the origin and the nature of the correspondence seem to have
been overlooked in Ref. [15].

The key role is played again by the finiteness of the domain.
As emphasized in Sec. VD and just above a container is
a necessary thing when turbulence is linearly forced. It is,
therefore, not much of a surprise that similarities between
linearly forced and freely decaying turbulence are more
detailed when the decaying side evolves in a way consistent
with the existence of a container: For adequately high Reynolds
numbers that means L ~ const {and the rest of the power
laws [Egs. (28)—(30)] for y = 0}. The mathematics of self-
similarity of turbulence with respect to the scale L then
imply exactly the same formula [Eq. (61)] for both kinds of
turbulence.

The next obvious question is as follows: What kind of
modifications does linear forcing need in order to reproduce
aspects of a generic decaying turbulence, associated with
Eq. (60) and an evolution law L ~ ¢”? Two immediate guesses
are to consider a time-dependent rate A = A(#) or to consider a
time-dependent box whose size [ evolves according to/ ~ ¢7.
The analysis of such possibilities is left for future work.
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