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This Commentary has three aims: (1) to state the complete

extended Boussinesq equation, from which its abridged and

commonly used form derives, and the condition under

which the latter represents the complete one with sufficient

accuracy; (2) to draw attention: (a) to an analytical steady-

state solution of the nonlinear extended equation of

Boussinesq derived by Henderson and Wooding (1964) and

reworked by Basha and Maalouf (2005), and (b) to

McEnroe’s (1993) solution of Eq. 21 in Chapuis (2011);

and (3) to discuss steady-state solutions of two linearised

forms of the extended equation of Boussinesq, giving cri-

teria under which the linear solutions approximate the

nonlinear solutions well.

The complete form of the extended equation

of Boussinesq

Subsurface flow on a sloping base (also called subsurface

stormflow or hillslope flow) has been studied extensively.

Henderson and Wooding (1964) and Wooding and Chap-

man (1966) laid its mathematical foundations based on the

Dupuit-Forchheimer theory of unconfined flow (hydrostatic

pressure and thus constant potential over the depth, H,

measured normal to the bed) deriving the extended

equation of Boussinsq that accounts for a sloping base.

Wooding (1966) examined the accuracy of that hydraulic

equation via application of conformal mapping. In the

notation of Chapuis (2011), the soil has saturated hydraulic

conductivity ksat and specific yield f, rests on an impervious

bed inclined against the horizontal at an angle a, and is

recharged at a constant rate per unit horizontal area N. Then,

the discharge per unit width (planar flow), at time t and

location x0, measured from the top of hill along the inclined

base of length L, is given by (Henderson and Wooding

1964; Wooding and Chapman 1966; Childs 1971)

q ðx; tÞ ¼ Hksat sin a � o H

o x0
cos a

� �
; ð1Þ

where flow is properly positive in the ?x0 direction. The

storage balance equation is

f
o H

o t
þ o q

o x0
¼ N cos a þ N

o H

o x0
sin a: ð2Þ

The term N(qH/qx0)sina on the right-hand side of Eq. 2

derives from the scalar product of the recharge vector and the

unit normal of a free surface element, but is rarely included in

the volume balance. Combining Eq. 1 with Eq. 2 yields the

complete extended equation of Boussinesq for unconfined

flow over an inclined base (Akylas et al. 2006):

f
o H

o t
þ ksat sin a 1 � N

ksat

� �
o H

o x0

� ksat
o

o x0
H

o H

o x0

� �
cos a

¼ N cos a: ð3Þ

Henderson and Wooding (1964) neglected the last term

in Eq. 2, obtaining Eq. 3 with (1 - N/ksat) replaced by 1.

That equation has been adopted widely (e.g., Beven 1981;
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Koussis and Lien 1982; Koussis 1992; Koussis et al. 1998;

Verhoest and Troch 2000; Pauwels et al. 2002; Basha and

Maalouf 2005) and holds for N/ksat � 1 (e.g., for N =

24 mm day-1 and ksat = 2.5 m day-1, N/ksat & 0.01).

Chapman (2005) gives an excellent review of the

governing equations, also comparing the solution of Eq. 3

to that of a linearised form; he shows that the mean steady

flow depths, computed with (1 - N/ksat) and with that factor

set to 1, vary appreciably only for large N/ksat values,

N/ksat C 0.1, say. Given that typically N/ksat \ 0.05 and the

uncertainty in the values of ksat and N, the approximation

seems justified in most cases. Unfortunately, Chapuis (2011)

stated the extended Boussinesq equation for the case of

constant discharge (N = 0) but considered recharge in his

solution.

The analytical steady-state solution of the nonlinear

extended equation of Boussinesq of Henderson

and Wooding (1964)

Henderson and Wooding (1964) derived an analytical

solution of the nonlinear extended equation of Boussinesq

for steady-state flow with recharge, i.e., Eq. 3 with qH/

qt = 0 (and also N/ksat � 1). The resulting governing

equation can be integrated analytically once, yielding, in

essence, the flux, Eq. 1 (see Eq. 2 with qH/qt = 0):

H
o H

o x0
� H tan a � Nx0=ksat

H

� �
¼ const: ð4Þ

Equation 4 is the point of departure for developing

solutions that vary depending on the boundary conditions of

the problem. In their discussion of such solutions, Henderson

and Wooding (1964) considered the case of no-flow at the top

of the hill, x0 = 0, whence the constant on the right-hand side

of Eq. 4 vanishes, leading to two possibilities (see Eq. 1):

either H = 0, or qH/qx0 = tana (i.e., the depth is finite but

the free surface is horizontal there). In both instances the

first-order ordinary differential equation 4 can be integrated.

In the second case, the solutions, presented by Henderson

and Wooding (1964) in non-dimensional form, depend on

the value of the dimensionless source term k = 4Ncosa/

ksatsin2a. Basha and Maalouf (2005), adopting the same form

of k, give solutions for k[ 1 and k B 1, also considering a

non-zero depth condition at the foot of the hill. These

published solutions are not reproduced here. It should be also

noted that Basha and Maalouf (2005) acknowledge that the

commonly used form of the extended Boussinesq equation,

which they themselves use, is an approximation of the

complete one, Eq. 3.

McEnroe (1993) combined the steady-state volume

conservation equation q = Nx with the approximate dis-

charge expression, elegantly derived by Chapman (1980),

q = -ksatcos2a h0d/dx [(h0 ? z)], where z = (L - x) tana
the bed elevation, and obtained the equation

ksath
0 d h0

d x
cos2 a� ksath

0 tan a cos2 aþ Nx ¼ 0 ð5aÞ

which, after introducing the coordinates’ relationship

x = x0 cosa, writes

ksath
0 d h0

d x0
� ksath

0 sin aþ Nx0 ¼ 0 ð5bÞ

(McEnroe incorrectly used z as x tana, but his final Eq. 9 is

correct.) McEnroe solved Eq. 5b, which differs from

Eq. 14 of Chapuis (2011) in that: (i) it lacks the term

Qo/cosa (it assumes zero–flow at x0 = 0) and––following

Chapman (1980)––the first term does not have the cos2a,

which however is very nearly 1 for the slopes considered by

Chapuis. Except for these differences (amounting to a shift

in the transformed x0 variable, X, of Chapuis), Eq. 21 of

Chapuis and McEnroe’s Eq. 9 (Eq. 5b here), and its

dimensionless counterpart Eq. 10, are formally identical,

with compatible solutions. McEnroe made his nondimen-

sional Eq. 10 separable by changing variables to X = x0/L
and u = h0/(x tana) (equivalent to making Eq. 5b here

separable in the variables x0 and h0/x0), obtaining and solving

the differential equation -dX/X = udu/(R* - u ? u2), where

R* = N/ksatsin
2a.

Linearisation solutions of the extended Boussinesq

equation

Two ways to linearise Eq. 3 have been advanced. The first

assumes that the variation of the depth over the slope is

small and implies that (qH/qx)2 is small relative to the other

terms in the equation and may be neglected, while q/qx0

(HqH/qx0) & Hoq
2H/qx02. This is the basis of the linearised

equation first introduced by Koussis and Lien (1982), and

used extensively since then to model subsurface flow on a

sloping base, in which Ho [=pD in the notation of Chapuis

(2011), his Eq. 3] must be determined, e.g., as proposed by

Koussis (1992). We state that equation here, corrected to

include the factor (1 - N/ksat):

f
o H

o t
þ ksat sin a 1 � N

ksat

� �
o H

o x0
� ksatHo

o2H

o x02
cos a

¼ N cos a ð6Þ

Chapman (1995) proposed the quadratic [terminology

of Basha and Maalouf (2005)] linearisation g = H2, so that

the linearised extended equation of Boussinesq writes:

f
o g
o t
þ ksat sin a 1 � N

ksat

� �
o g
o x0
� ksat

ffiffiffiffiffi
go

p o2g
o x02

cos a

¼ 2
ffiffiffiffiffi
go

p
N cos a ð7Þ
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Equations 6 and 7 are Linear Advection–Diffusion

equations [the LAD model of Koussis (1992) and Akylas

et al. (2006)] that are appropriate under different

conditions. Equation 6 properly reproduces the kinematic

wave behaviour in the small-depths limit, whence Ho = 0

(steep slopes, high ksat, low N, i.e., small k; see formal

criterion below), while Eq. 7 recovers Dupuit’s equation

ksatd/dx(HdH/dx) = -N in the limit a = 0. Each one of

these equations, expectedly, fails in the limiting case where

the other is exact: in the first limiting case the approximate

second-derivative term Hoq
2H/qx02 is eliminated, leaving

the kinematic wave equation, which is exact under the

stated limiting conditions; in the second limiting case,

a = 0, the approximated first spatial derivative term is

eliminated, leaving (with qH/qt = 0, at steady state) the

Dupuit equation, which holds exactly for a horizontal base.

Evidently, Eqs. 6 and 7 formally admit the same solutions,

which must be translated according to the appropriate

linearisation variable. Akylas et al. (2006) identified

the dimensionless parameter Lsina(1 - N/ksat)/Hocosa &
Lsina/Hocosa = Ltana/Ho & DZ/Ho as controlling the flow

behaviour; it expresses the ratio of gravity–driven flow to

gradient–driven flow (hydraulic diffusion). Ho (=pD) is a

function of the dimensionless source term k = 4Ncosa/

ksatsin2a of Henderson and Wooding (Akylas et al. (2006)

use R = k/4), which shows that the slope influences the flow

behaviour more than the hydraulic conductivity or the

recharge rate, but not exclusively, so that in the same

geologic medium the flow can be more kinematic or more

diffusive depending on the recharge rate.

In their comprehensive analysis, Basha and Maalouf

(2005) compared solutions to both linearised extended

Boussinesq equations at steady state with the exact nonlinear

steady-state solution (their Fig. 2): they found the first,

‘‘linear’’ solution (Koussis) suitable for small k and the

second, ‘‘quadratic’’ solution (Chapman) suitable for large k
(but did not demarcate the ‘‘small–large’’ k-boundary), an

expected behaviour according to the above analysis. Akylas

et al. (2006) compared the analytical steady-state solution of

the linearised Eq. 6, for q(x0 = 0) = 0 and H(x0 = L) = 0,

to a numerical nonlinear steady-state solution (their Fig. 2)

and found it to perform well up to k & 1.5. Generally, the

linearised Eq. 6 or 7 is readily solved for non-zero depth at

x0 = L and non-zero flow at x0 = 0; e.g., Pauwels et al.

(2002) present a solution to the linearised Eq. 6 for a non-

zero depth at the foot of the hillslope, as do Basha and

Maalouf (2005) for flow at steady-state.

Concluding remarks

1. McEnroe (1993) was the first to derive and solve

Eq. 14 of Chapuis (2011) (without the Qo term).

2. We question Chapuis’s preference for Eq. 14 and its

implicit solution Eq. 21 to the also implicit and equally

awkward to handle, but better-founded solution of

Henderson and Wooding (1964) of the extended

equation of Boussinesq. Assuming that the results of

Eq. 21 are close to those of the rigorous solution of

Henderson and Wooding, the former could be chosen

if it were clearly simpler to handle than the latter, but

this is not the case.

3. Furthermore, we are of the opinion that the two

solutions of the linearised extended equation of

Boussinesq, properly used, afford reliable estimates

for practical work, given the usual uncertainty sur-

rounding the schematised hillslope geometry, the

values of the aquifer’s parameter and the recharge.

These linear solutions allow superposition as well as

modelling of transient flow in sloping aquifers [Akylas

and Koussis (2007); Koussis et al. (2007)].
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