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Abstract
In the great majority of slug tests performed in wells fully penetrating confined geologic formations, and for

over-damped conditions, the response data are evaluated with the transient-flow model of Cooper et al. (1967)
when the radial hydraulic conductivity Kr and the coefficient of specific storage Ss are to be estimated. That
particular analytical solution, however, is computationally involved and awkward to use. Thus, groundwater
professionals often use a few pre-prepared type-curves to fit the data by a rough matching procedure, visually or
computationally. On the other hand, the method of Hvorslev (1951), which assumes the flow to be quasi-steady,
is much simpler but yields only Kr estimates. In this work, we develop a complete quasi-steady flow model that
includes a storage balance inside the aquifer and allows estimating Kr and Ss simultaneously, through matching
of the well response data to a type-curve. The new model approximates the model of Cooper et al. closely and
has the practical advantage that its solution type-curves are generated easily using an electronic spreadsheet, so
that the optimal fit of data by a type-curve can be readily automated.

Scope of Work
Slug tests offer a fast and inexpensive means

of estimating the hydraulic parameters of a geologic
formation, and are very well suited for contaminated site
assessment because no water is essentially withdrawn.
In this in situ test, head variations are generated in
the aquifer through a rapid change of the water level in the
borehole, induced by adding or bailing water, by placing
a metal piece (a slug) in the well casing causing a change
of the water level, or pneumatically. Several methods
have been developed for evaluating the head variation
observed in the well (response), in order to estimate the
hydraulic parameters of the geologic formation across
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the screened or open section of the test well (Butler
1998). The method of Hvorslev (1951) is the simplest of
these, but allows estimating only the geologic formation’s
hydraulic conductivity. In contrast, the method of Cooper
et al. (1967) permits estimating also the specific storage,
but is quite involved mathematically. Chirlin (1989) has
analyzed incisively the physics underpinning these two
methods. The monograph of Butler (1998) is an excellent
source of knowledge regarding theoretical and practical
aspects of the slug test.

In this Methods Note we consider slug tests per-
formed in homogeneous confined aquifers fully pene-
trated by the test well (Figure 1), intending to show that
the quasi-steady flow model, on which the method of
Hvorslev is founded, is not inherently limited to the esti-
mation of a formation’s hydraulic conductivity, but can
be extended to estimate a formation’s specific storage
coefficient as well. In a quasi-steady solution, a series
of steady states is substituted for the transient process,
that is, the evolution of the physical system is considered
to take place in abrupt steps from one steady state to the
next one. This concept is well established in subsurface
hydrology, dating back to Lembke (1886, 1887), and is
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still in use (e.g., the quasi-steady solution of Verhoest and
Troch (2000) and its assessment by Akylas et al. (2006)).

Slug test models may be broadly subdivided in
those that solve the governing flow (field ) equation over
the entire domain and in those that focus on the head
variation inside the well, relating it to the flux across the
well screen that prevails throughout the aquifer at each
instant, according to the quasi-steady flow approximation.
The model of Cooper et al. (1967) belongs to the first
category and the model of Hvorslev (1951) to the second.
The second model type cannot yield an estimate of a
formation’s specific storage coefficient, because it does
not invoke a storage balance inside the aquifer that would
account for storage changes. However, the quasi-steady
flow model can serve to set up a storage balance for
the aquifer. Here, we develop such a first-category model
based on the approximate, but complete representation of
quasi-steady flow dynamics, and devise a method for slug
test data evaluation that allows estimating Kr and Ss.

Theoretical Foundation: The Model of Cooper
et al. (1967)

The equation governing groundwater flow induced
by slugging a well fully penetrating a homogeneous
confined aquifer of constant thickness, Figure 1, is derived
from the law of mass conservation ∇ · (ρq) = ∂(ρn)/∂t ,
with the velocity q expressed by Darcy’s law and
introducing constitutive laws for the water and the aquifer,
leading to ∇ · q = Ss∂h/∂t (de Marsily 1986). In polar
coordinates (rotational symmetry; no vertical variations)
this governing equation is

∂2h

∂r2
+ 1

r

∂h

∂r
= Ss

Kr

∂h

∂t
, r > rs, (1)

where h is the departure of formation’s hydraulic head
from static conditions, Kr the hydraulic conductivity
in the radial direction, Ss the specific storage, b the

Figure 1. Slug test in a well fully penetrating a confined
aquifer.

formation thickness, H the departure of the head in the
well from static conditions, Ho the head departure in
the well after instantaneous initial displacement, rs the
effective radius of well screen, rc the effective radius
of well casing, r the radial distance from the well axis,
t the time, n the porosity, and ρ the mass density of
water.

Initial and boundary conditions for the well and for
the aquifer are also needed. The initial conditions imply
an instantaneous introduction of the slug and are as
follows:

h(r, 0) = 0, rs < r < ∞ (in the aquifer); (2a)

H(0) = Ho (in the well). (2b)

It is furthermore assumed that no well losses occur
(no skin effect), whence at the well screen

h(rs, t) = H(t), t > 0. (3a)

In addition, the flow across the well screen (into/out
of the aquifer) equals the rate of volume change of the
water column in the well, where hydrostatic conditions
are assumed to prevail:

2πrsKrb
∂h(r, t)

∂r

∣∣∣
rs

= πr2
c

dH(t)

dt
. (3b)

Finally, the aquifer’s boundaries are taken at an
infinite radial distance from the test well:

h(r → ∞, t) = 0, t > 0. (4)

Equations 1 through 4 comprise the mathematical
model of the method of Cooper et al. (1967). Its analytical
solution (integral of Bessel functions) is written in terms
of the dimensionless parameters for time, β, and for
storage, α, and has been tabulated by Cooper et al. (1967)
and Papadopulos et al. (1973) in the range of practical
interest:

H(t)

Ho
= f (β, α), (5)

β = Krbt

r2
c

, (6)

α = r2
s Ssb

r2
c

. (7)

The Quasi-Steady Flow Model of Hvorslev
(1951)

Hvorslev simplified the problem by assuming that the
specific storage is so small that the right-hand side of
the governing Equation 1 may be set to zero without great
loss in accuracy,

∂2h

∂r2
+ 1

r

∂h

∂r
= 0. (8)
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The governing equation has thus become quasi-
steady; this approximation causes any change at the
well to propagate instantly throughout the aquifer. One
implication is that the flow rate through cylindrical sur-
faces of any radius r around the well axis is the same.
Another result is that the constant-head (h = 0) bound-
ary may not be placed at infinity, but at an unknown and
time-varying distance R instead; accordingly, for t > 0,
Equation 4 is replaced by

h(r = R) = 0. (9)

Of course, transient flow cannot be represented by
a quasi-steady flow equation, in which time does not
appear explicitly. But this obstacle is circumvented by
writing Equation 3b, which expresses the aforementioned
constancy of the flow rate, for an arbitrary radial distance
r; that equation is also restated by introducing r∂h/∂r =
∂h/∂lnr:

2πrKrb
∂h(r, t)

∂r
= 2πKrb

∂h(r, t)

∂ ln r
= πr2

c
dH(t)

dt
(10a)

∂h(r, t)

∂ ln r
=

(
r2

c

2Krb

)
dH(t)

dt
. (10b)

Equations 3a and 8 through 10 comprise the mathe-
matical model of the method of Hvorslev (1951), which
differs from that of Cooper et al. (1967) in that (But-
ler 1998): (1) it ignores the effect of storage, (2) the
constant-head boundaries are placed at the constant dis-
tance R, and (3) the slug must no longer be introduced
instantly. The solution of Hvorslev’s model is derived
as follows. Because the right-hand side of Equation 10b
is independent of r , so is ∂h/∂ ln r; it then holds
exactly

∂h

∂ ln r
= �h

� ln r
= h(R) − h(rs)

ln R − ln rs
= 0 − H(t)

ln(R/rs)
. (11)

We may now express the left-hand side of Equa-
tion 10b with Equation 11 to obtain

− H(t)

ln(R/rs)
= r2

c

2Krb

dH

dt
, (12)

which is integrated analytically, yielding the equation of
Hvorslev

ln

[
H(t)

Ho

]
= − 2Krbt

r2
c ln(R/rs)

. (13)

This quasi-steady model solution plots as a straight
line on a logarithmic-linear graph of the normalized head
recovery at the well vs. time, and the value of Kr is obtained
from the slope of the best straight-line fit of the data through
regression. A common approach is to estimate this slope
from the basic time lag To at which ln(H /Ho) = 0.368,

exploiting the identity ln(0.368) = −1; since, at t = 0,
ln(H /Ho) = 0 and 2Krbt/[r2

c ln(R/rs)] = 0, the slope is
ln(0.368)/To = −1/To. Finally, solving Equation 13 for Kr,
with ln(H /Ho) = −1 and t = To, gives

Kr = r2
c ln(R/rs)

2bTo
. (14)

Butler (1998) shows that estimation accuracy imp-
roves when a straight line is fitted through the nearly
linear mid-portion of the data set (0.15 ≤ H /Ho ≤ 0.25)
and the data are renormalized as H(t)/Ho/H+

o , where
H+

o is that straight line’s intercept on the axis of
log[H(t)/Ho].

Equation 14 can be evaluated, if the value of ln(R/rs)
is known. Chirlin (1989) showed that: (1) while the
optimal value of ln(R/rs) is unknown, the error in
the estimation of Kr is within a factor of 10, when the
elastic storage parameter α varies over 10 orders of mag-
nitude and 4 ≤ R/rs ≤ 320 × 103; and (2) the omission of
storage in Hvorslev’s method leads to greater sensitivity
of the results the more compressible the aquifer is; an
upward-concave curve of log(H /Ho) against t indicates
that storage plays a role and care must be exercised in fit-
ting a straight line through the response data. Ostendorfer
and DeGroot (2010) show that curved slug test responses
can also result due to a slowly (seasonally) varying back-
ground head occasionally present in leaky or consolidating
aquifers, and typically in unconfined aquifers of very low
permeability.

The Complete Quasi-Steady Flow Method
The quasi-steady flow Equation 8, with boundary

conditions Equation 3a (with H = h(rs), at the h(rs)-
value corresponding to each time t) and Equation 9, is
integrated, yielding the analytical solution

h(r)

h(rs)
= h(r)

H
= ln(r/R)

ln(rs/R)
= ln(R/r)

ln(R/rs)
. (15)

We estimate the specific storage coefficient Ss by
applying the principle of mass conservation, using the
quasi-steady solution Equation 15 as follows. Under
the assumption of quasi-steady flow, at any time t after
the initiation of the slug test, the change of the water
volume stored inside the well casing relative to the
initial slug volume, Vwell, equals the change in water
stored in the aquifer up to r = R(t) relative to the
initial aquifer volume, Vaq, since that slug water entered
the aquifer flowing across the well screen. The former
water volume is simply

Vwell(t) = πr2
c [H(t) − Ho]. (16)

The latter is calculated by integrating the quasi-steady
flow profile, Equation 15, over the volume bounded by
the cylindrical aquifer surfaces at r = rs and r = R(t),
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multiplied by Ss, or

Vaq = 2πbSs

∫ R

rs

h(r)rdr

= 2πbSsR
2

ln(R/rs)

∫ rs/R

1
ln(r/R)(r/R)d(r/R). (17)

In Equation 17, with x = r/R, ∫ x ln x dx = x2[ln(x)/

2 − 1/4]; therefore the expression for Vaq becomes

Vaq = 2πbSsHR2

ln(R/rs)

(
1

4
− (rs/R)2

4
[2 ln(R/rs) + 1]

)

= πbSsHR2
(

(R(t)/rs)
2 − 2 ln(R(t)/rs) − 1

2 ln(R(t)/rs)

)
.

(17a)

Mass conservation, under the quasi-steady flow
assumption, Vwell = Vaq, yields then

Ho − H(t)

H(t)
= bSsr

2
s

r2
c

(
(R(t)/rs)

2 − 2 ln(R(t)/rs) − 1

2 ln(R(t)/rs)

)
,

(18)

or restated using the dimensionless storage parameter
α = r2

s Ssb/r2
c of Cooper et al. (1967):

Ho − H(t)

H(t)
= α

(
(R(t)/rs)

2 − 2 ln(R(t)/rs) − 1

2 ln(R(t)/rs)

)
.

(19)

Finally, the statement of mass conservation is supple-
mented by Equation 12, which expresses the constancy of
flow rate and is rearranged slightly as follows,

1

H(t)

dH(t)

dt
= d ln[H(t)/Ho]

dt
= − 2Krb

r2
c ln[R(t)/rs]

, (20)

or restated in terms of the dimensionless time parameter
β = Krbt /r2

c of Cooper et al. (1967),

d ln[H(β)/Ho]

dβ
= − 2

ln[R(β)/rs]
. (21)

Note that in Equation 20 R = R(t), while, in the
otherwise identical solution of the Hvorslev model,
Equation 13, R is assumed to be constant. Chirlin
(1989) gives the following interpretation of the slug
test’s effective radius necessitated by the incompressible
approximation in Hvorslev’s model: “This approximation
spawns an adjustable parameter re in Hvorslev (1951) that
provides a degree of freedom analogous to the physically
based compressive storage of Cooper et al. (1967)” (re

corresponds to R here). We emphasize that the complete
quasi-steady flow model not only remedies the deficiency
of the Hvorslev model, by permitting the estimation of
the specific storage, but also eliminates the empirical
concept of the slug test’s constant effective radius (Butler
1998) considered by Chirlin (1989) as a substitute storage
parameter.

Solving Equations 18 and 20 (or Equations 19 and
21) numerically (see Appendix), we generate type-curves,
with α as parameter, depicting the departure from static
conditions of the water level in the well normalized by the
initial displacement, H /Ho, as function of β in logarithmic
scale. The complete quasi-steady model is compared to
the Cooper et al. (1967) standard in Figure 2. The good
agreement testifies to its accuracy, supporting Hvorslev’s
contention of near-incompressible flow dynamics. The
small discrepancies below H /Ho ≈ 0.1 are due to the two
models’ different constant-head boundaries, R(t) and r →
∞. In the quasi-steady approximation, the flow entering
the aquifer at the well screen propagates instantly to
r = R(t), where it exits; the boundary R(t) responds
to the flow at the well screen. The fundamental premise
of the complete quasi-steady flow model, Vwell = Vaq, is
inexact because Equation 8 and its solution Equation 15
ignore elastic storage, the results however show this
effect to be small and adequately captured by the
variable R.

The complete quasi-steady flow model is not simply
a second step for calculating the specific storage, after
estimating the radial hydraulic conductivity by Hvorslev’s
model. It is a self-contained method for simultaneously
estimating a formation’s hydraulic parameters Kr and Ss,
in which the radius of influence R varies temporally, as
Equations 18 through 21 reflect. Importantly, quasi-steady
flow type-curves for specified values of α are generated
easily using an electronic spreadsheet. One would then
apply the matching procedure of Cooper et al. (1967) to
calculate the formation’s hydraulic parameters: (1) fit the
observations optimally with a type-curve (αopt) (abscissas
must have scales with equal number of log cycles),
(2) select a convenient match point —for example, β = 1,
for which the time tβ=1.0 is read off the x-axis of the data

Figure 2. Water level in the well as function of the dimen-
sionless time parameter β, for values of the dimensionless
storage parameter α = 10−2, 10−3, 10−4, 10−5, 10−6, and
10−7, decreasing upwards: solid lines, complete quasi-steady
flow model; dashed lines, model of Cooper et al. (1967).
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plot—and (3) use Equations 6 and 7 with β = 1, tβ=1.0,
and αopt to compute Kr = r2

c /btβ=1.0 and Ss = αoptr
2
c /r2

s b.

Field Verification
We use the data from a slug test performed in

well Ln1 at the Lincoln County, Kansas monitoring
site—Table 3.1 in Butler (1998)—to demonstrate the
application of the complete quasi-steady flow model.
The well penetrates fully the confined aquifer of thick-
ness b = 3.05 m and has effective screen radius rs =
0.071 m and effective radius of casing rc = 0.025 m.
The model of Cooper et al. (1967) provides an excel-
lent fit to those data for αopt = 0.0108—Figure 5.4 in
Butler (1998)—yielding Ss = 4.38 × 10−4/m, and, from
the match point β = 1, Kr = 3.69 × 10−4 m/d. These
results are the reference standard. For comparison, we
also note two values of the radial hydraulic conductiv-
ity estimated by Hvorslev’s method with R/rs = 200, as
recommended by the U.S. Navy (Butler 1998): (1) Kr =
4.65 × 10−4 m/d, when the linear regression honors all
data points, and (2) Kr = 3.88 × 10−4 m/d, by fitting a
straight line only through the nearly linear mid-portion of
the data and renormalizing the data (Butler 1998).

Figure 3 shows the test data fit by the quasi-
steady model’s type-curve with αopt = 0.0111 (visually)
that yields the specific storage estimate Ss = 4.51 ×
10−4/m via Equation 7. From the match point at β =
1, tβ=1.0 = 47863 s, we estimate the radial hydraulic
conductivity as Kr = 3.70 × 10−4 m/d. Both parameter
values are very close to the reference standard of Cooper
et al. (1967).

We have also tested an optimization method that
minimizes the bias (mean deviation) of the computed
curve from the data points, while conditioning the first
to have the same area as the data curve, both plotted in
logarithmic time scale; these indicators are theoretically
identical, but their values differ in applications, as they

Figure 3. Fit of test data (•••) by the complete quasi-steady
model’s type-curve with αopt = 0.0111.

depend on the distribution and number of data points.
The quasi-steady flow solution is computed repeatedly
in an exhaustive-search (Mills 2010), testing α- and
β-values until finding the optimal pair. The simplicity
of the quasi-steady flow solution allowed executing the
optimization on an electronic spreadsheet. The obtained
formation parameter values Kr = 3.67 × 10−4 m/d and
Ss = 5.10 × 10−4/m are close to the visually optimized
parameters of the quasi-steady flow and the Cooper et al.
(1967) methods.

Conclusions
The complete quasi-steady flow model, with a time-

variable radius of influence R, underpins an efficient
method for estimating both hydraulic parameters Kr and
Ss of a formation in the over-damped case. This model
extends and completes the model of Hvorslev (1951),
for it uses the same quasi-steady flow approximation,
yet enables also estimating a formation’s specific storage
coefficient via a transient aquifer storage balance. The
accuracy of the quasi-steady flow model has been tested
and verified against the model standard of Cooper et al.
(1967), using field data from a slug test performed at a
monitoring site of the Kansas Geological Survey. Type-
curves of this quasi-steady flow model are generated easily
using an electronic spreadsheet. The advantage of this
computational ease and efficiency is that the optimal fit of
data by a type-curve can be readily automated for practical
applications.
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Appendix

The Calculation of the Quasi-Steady Flow Model’s
Type-Curves H/Ho = f (α, β)

Values of the ratio y = R/rs are computed in
increments �y from 1 to, say, 106 (�y is not necessarily
constant and may be increased as y increases) and the
right-hand side of Equation 19

F(y) = (y2 − 2 ln y − 1)

2 ln y
(A1)

is calculated for each y; application of the rule of de
L’ Hospital verifies that F(y = 1) = 0. According to the
Equation 19, for any value of the storage parameter α

the value of the expression [αF(y) + 1]−1 represents a
specific instance of H /Ho at time t (or β = Krbt/r2

c )
through

H(t)

Ho
= H(β)

Ho
= [αF(y) + 1]−1. (A2)
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H (β)/Ho is linked to appropriate β-values by calculating
via Equation 21 for each y = yi the associated

�βi/i+1 = − ln yi ·�[ln(H(βi)/Ho)]

2

= − ln yi ·� ln[αF(yi) + 1]−1

2
; (A3)

�βi/i+1 is the interval between time points i and i + 1.
The β-sequence associated with the y-values is generated
starting at y = 1, which corresponds to β = 0. This
procedure may be readily carried out with an electronic
spreadsheet by: (1) storing the values of rs, rc, b, Kr, and
Ss in cells B1. . . , B5 and computing α in cell B6, say;
and (2) calculating row-by-row, for example, in columns
D-H, y in D and F(y) in E, β in F and t in G, and H /Ho

in H. This simple solution by forward finite differences
(Euler scheme) typically requires small steps for accuracy;
if desired, however, other self-starting methods, such as
Runge-Kutta schemes, may be used instead.
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