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Abstract. In this study, profile functions for flux calculations during unstable conditions are
proposed and examined. These functions are based on a direct interpolation for the dimen-
sionless wind speed and temperature gradients between the standard Businger–Dyer formulae,

/KuðfÞ ¼ ð1� cufÞ�1=4, /KtðfÞ ¼ ð1� ctfÞ�1=2, and free convection forms, /Cu;;tðfÞ ¼
ð1� aCu;tfÞ�1=3, f being the Monin–Obukhov stability parameter. A previously presented
interpolation between the corresponding profile relationships, in attempting to provide a

general relationship for the whole unstable regime, leads to serious restrictions for the values
of aCu;t in the free convection forms. These restrictions rendered available experimental data
almost inapplicable, since the behaviour of the formulae in the near-neutral range controls the

values of those parameters. The proposed interpolation provides functions that, firstly, fit the
standard Businger–Dyer forms for near-neutral conditions and, secondly, satisfy the asymp-
totic behaviour as f! �1, permitting wider ranges of possible aCu;t values. This step is very
important, taking into account the large spread of the experimental data. Thus, as further and

more accurate observations at strong instability become available, this approach could prove
very efficient in fitting these data while retaining correct near-neutral behaviour.

Keywords: Businger–Dyer formulae, Convective forms, Free convection, Monin–Obukhov

theory.

1. Introduction

The Monin–Obukhov (M–O) similarity theory (Obukhov, 1946; Monin and
Obukhov, 1954) is the most widely accepted way to describe turbulence and
vertical turbulent fluxes in the horizontally homogeneous and stationary
atmospheric surface layer. According to this theory, the dimensionless
vertical gradients for mean wind speed and temperature are universal
functions of the dimensionless stability parameter,

f ¼ z

L
; ð1Þ

where z ð� hÞ is the height above the surface, h is the boundary-layer height
and L is the Obukhov length, which is given by,
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L ¼ �u
3
�Tv

kgw0h0v
: ð2Þ

Here u� is the friction velocity, Tv is the virtual temperature, k is the von
K�arm�an constant, g is the gravitational acceleration and w0h0v the virtual
temperature flux at the surface. The dimensionless gradients of wind speed
and temperature are determined through the following equations:

/uðfÞ ¼
kz

u�

� �
dU

dz
; ð3aÞ

/tðfÞ ¼
kz

h�

� �
dh
dz
; ð3bÞ

where h� is the temperature scale given by

h� ¼
�w0h0

u�
: ð4Þ

The forms /u;tðfÞ are universal functions of the dimensionless stability
parameter f. Their general mathematical form cannot be predicted by the M–
O theory, so the functions are estimated through experimental measurements.
However, the theory provides some constraints on the asymptotic forms of
/u;tðfÞ. Thus, during neutral stability conditions (f! 0), both functions ap-
proach unity, corresponding to the well-known logarithmic profile case. In the
free convection limit (�f!1), it has been suggested (Obukhov, 1946, 1959;
Monin and Obukhov, 1954; Priestley, 1954, 1955; Monin, 1959) that the
surface stress and, correspondingly u� can be dropped from the list of inde-
pendent variables. Dimensional analysis shows that in this case the dimen-
sionless gradients approach the following convective dependence:

/u;tðfÞ ¼ Au;tð�fÞ�1=3: ð5Þ
It is noted that the convective parameters, Au;t, are universal constants and

have to be determined through measurements. However, measurements in
free convection are difficult to carry out and most determinations are based
on observations that correspond to values of f close to the neutral regime.
Such a limited area of instability also has been used to date for the estimation
and evaluation of the widely used Businger–Dyer (Kansas-type) functions
(Businger, 1966; Dyer and Hicks, 1970; Businger et al., 1971; Dyer, 1974),

/KuðfÞ ¼ ð1� cufÞ�1=4; ð6aÞ
/KtðfÞ ¼ ð1� ctfÞ�1=2; ð6bÞ

which are based on measurements from the famous Kansas experiment
(Izumi, 1971; Izumi and Coughey, 1976). These forms satisfy the neutral limit
but do not show the predicted asymptotic behaviour of (5) for large negative
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values of f. Their validity lies in the range )2< f < 0, although some
researchers argue that this range could be extended to �5 (Garratt, 1992) or
even to �10 (Dyer and Bradley, 1982). The proper choices for cu;t have been
the subject of extended discussion (Yaglom, 1977; Dyer and Bradley, 1982;
Hogstrom, 1985, 1986, 1988; Telford and Businger, 1986; Businger, 1988;
Sorbjan, 1989; Garratt, 1992), with the values cu ¼ ct ¼ 16 by far the most
commonly used.

An alternative convective form that has been suggested (Carl et al., 1973;
Fairall et al., 1996) results from the replacement of the exponents in (6) by
�1=3:

/Cu;tðfÞ ¼ ð1� aCu;tfÞ�1=3: ð7Þ
Such forms coincide with the asymptotic character of (5) for aCu ¼ A�3u and
aCt ¼ A�3t , but their behaviour at near-neutral stability is not necessarily
correct, since the theory supports the value �1=3 for the exponents only
during strong instability. In addition, there is a lack of experimental data in
the free convection regime. As a result, numerous choices for the values of
aCu;t have been suggested (see Grachev et al., 2000 for an overview), after
evaluation, mainly, of observations made under moderate instability condi-
tions.

2. Wind Speed and Temperature Flux–Profile Relations

The vertical profiles of wind speed and temperature could be calculated
through the integration of Equations (3) (Panofsky, 1963) from a height
equal to the roughness length for wind, z0u, or for temperature, z0t,
(Brutsaert, 1975; Garratt et al., 1993) to the generalised height of application,
z. However, the following integration of the /ðfÞ functions is mostly used
instead:

Wu;tðfÞ ¼
Z f

0

1� /u;tðnÞ
n

dn: ð8Þ

The use of this integral makes it possible to write the vertical profiles as
deviations from the neutral logarithmic profile in the form

UðzÞ ¼ u�
k

ln
z

z0u

� �
�Wu fð Þ þWu f0uð Þ

� �
;

hðzÞ � h0 ¼
h�
k

ln
z

z0t

� �
�Wt fð Þ þWt f0tð Þ

� �
; ð9Þ
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where f0u and f0t are the values of the stability parameter, f ¼ z=L, at the
heights z0u and z0t respectively. Here, it must be pointed out that this study is
not concerned with the possible difference between the values for k used for
wind and temperature profiles (Zilitinkevich et al., 1998), since this does not
affect the general concept.

If Equation (8) is applied to the Kansas-type /KðfÞ forms (6), the corre-
sponding WKuðfÞ for the wind-speed profile function becomes (Panofsky,
1963; Paulson, 1970)

WKuðfÞ ¼ 2 ln
1þ x

2

� �
þ ln

1þ x2

2

� �
� 2 arctan xþ p

2
; ð10Þ

where x ¼ ð1� cufÞ1=4. The corresponding calculation of WKtðfÞ yields

WKtðfÞ ¼ 2 ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ctf

p
2

 !
: ð11Þ

In the case of the alternative convective forms, given by (7), Fairall et al.
(1996) calculated the respective expressions via (8) as

WCu;tðfÞ ¼
3

2
ln

y2 þ yþ 1

3

� �
�

ffiffiffi
3
p

arctan
2yþ 1ffiffiffi

3
p

� �
þ pffiffiffi

3
p ; ð12Þ

where y ¼ ð1� au;tfÞ1=3.
Unlike the aforementioned functions (6) and (7), the use of the fully

convective forms (5) could not lead to W expressions, since they are not valid
for f values close to 0. If the integration, from z0u;t to z, is applied directly to
(5) instead, the resulting profiles show a dependence close to z�1=3, which
extends down to the surface:

UðzÞ ¼ 3Auu�
k

ð�f0uÞ�1=3 � ð�fÞ�1=3
� �

; ð13aÞ

hðzÞ � h0 ¼
3Ath�
k

ð�f0tÞ�1=3 � ð�fÞ�1=3
� �

: ð13bÞ

Equations (13), for the vertical profiles, do not have a logarithmic part. This
holds true also in the case of the profiles given by the combination of
Equations (9) and (12), but only for large values of f0 (Grachev et al., 1997,
1998; Akylas et al., 2001). For lower values of f, however, the use of such
functions is debatable, since, in that case, the behaviour of (7) is not neces-
sarily appropriate.

3. Interpolating between Kansas-Type and Convective Formulae

Among other techniques (e.g., Wilson, 2001), a reasonable way to produce
functions that cover the whole stability range, from neutral to free convection,
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is to interpolate between the Kansas-type (K) and convective (C) formulae
(Fairall et al., 1996, 2003; Grachev et al., 2000). The resulting equations intend
to show a good overall behaviour, by overlapping the Kansas-type functions
in the near-neutral range and, at the same time, satisfying the correct
asymptotic behaviour.

3.1. INTERPOLATION BETWEEN FLUX–PROFILE RELATIONS

Fairall et al. (1996, 2003) have chosen to interpolate between the flux–profile
relations (10), (11) and (12), through the following formulation:

W1u;tðfÞ ¼
WKu;tðfÞ þ f2WCu;tðfÞ

1þ f2
: ð14Þ

In order to calculate the dimensionless gradients /ðfÞ, corresponding to a
known flux–profile relation WðfÞ, Equation (8) must be transformed to

/ðfÞ ¼ 1� f
dWðfÞ
df

: ð15Þ

By introducing W1u;tðfÞ from (14) into (15), the corresponding dimensionless
gradients, /1u;tðfÞ, become:

/1u;tðfÞ ¼
/Ku;tðfÞ þ f2/Cu;tðfÞ

1þ f2
þ 2f2

WKu;tðfÞ �WCu;tðfÞ
� 	

1þ f2
� 	2 : ð16Þ

From the above expression, it is clear that /1 is very dependent on the
difference between WK and WC, which may cause /1 to deviate from a smooth
overall shape. Grachev et al. (2000) examined the first derivative of (16) and
showed (in their Figures 3 and 4) that this interpolation leads to smooth and
monotonically decreasing functions for only the specific choice of aCu ¼ 10
and aCt ¼ 34. As will be shown here, the above limitation is a result of the
strong dependence of the WCu;tðfÞ values, from (12), on the shape and the
magnitude of the corresponding /Cu;tðfÞ function (7) close to the neutral
limit; this is true even for strong convection. The choice of the flux–profile
relations W for the interpolation (14) includes information about the
behaviour of the dimensionless gradients /C during near-neutral conditions.
In order for the resulting function to be smooth and monotonic, WCu;tðfÞ are
forced to approach the respective Kansas-types for small values of the
parameter �f. As a result, the values for the parameters aCu;t are evaluated
indirectly, over data representative of light instabilities. However, the
behaviour of the functions W and / for low instability is known to coincide
with the Kansas-type formulae given by (6), (10) and (11). Thus, any inter-
polation attempted should aim to keep the lower part of the resulting
functions as close as possible to the Kansas estimates.

BUSINGER–DYER FORMULAE AND FREE CONVECTION FORMS 385



3.2. INTERPOLATING BETWEEN DIMENSIONLESS GRADIENTS

In this study, an alternative, direct interpolation between /KðfÞ and /CðfÞ is
investigated:

/u;tðfÞ ¼
c2/Ku;tðfÞ þ f2/Cu;tðfÞ

c2 þ f2
: ð17Þ

The main idea is that such an interpolation diminishes the influence of the
shape of the convective part of the function in the near-neutral stability area.
The near-neutral part of the resulting function is kept close to the Kansas
results, thereafter continuing with the proper asymptotic behaviour towards
the free convection limit. Parameter c corresponds to a critical value of f
above which the influence of the convective formulae, /C, starts to become
more important than that of the Kansas-type form, /K. The value of c ¼ 1
was used in all calculations of this study. Different choices of that parameter
could be used, in order to obtain a better performance and a smoother
behaviour of the resulting function, wherever it is necessary.

In order to ensure the smooth and monotonic behaviour of (17) over f, its
first derivative,

d/u;t fð Þ
df

¼
c2/0Ku;t fð Þ þ f2/0Cu;t fð Þ

c2 þ f2
�
2c2f /Ku;t fð Þ � /Cu;t fð Þ

� 	
c2 þ f2
� 	2 ; ð18Þ

has been calculated and tested to be positive and monotonic; in (18), /0Ku;t fð Þ
and /0Cu;t fð Þ are the first derivatives of (6) and (7) (or (5)), respectively.

In Figure 1, the forms of /ðfÞ and d/ðfÞ=df from the interpolation be-
tween Equations (6) and (7), for both wind speed and temperature, are
illustrated, for a variety of aCu;t choices. For the chosen values of the con-
vective constants aCu > 5 and aCt > 15 , the resulting functions /u;t fð Þ exhibit
a smooth and physically acceptable shape. This holds also true when, instead
of (7), (5) with Au ¼ a�1=3Cu and At ¼ a�1=3Ct , is used in the interpolation (not
shown here). In fact, the resulting functions differ from each other by less
than 1% for values of the convective constants greater than 5. As a result, it
does not matter which convective form is used, but the specific choice for the
values of aCu;t is important.

It must be noted that the mathematical demand for continuous, mono-
tonic derivatives of (17) narrows the range of the possible values for the
convective constants, as the order of the derivative increases. This is more
profound in the case of the upper limit of those constants, although the use of
larger values of parameter c may soften the restrictions. If, however, all the
derivatives, of any order, would be calculated (this has not been considered
necessary), the above demand would have led to a unique set of aCu;t values
(as in the case of Grachev et al., 2000). Nevertheless, this procedure does not
solve the principal problem that there will always be a non-monotonic
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derivative of higher order, which is a result of the interpolation between
functions with different exponents. Thus, from one point of view, there is no
physical difference between a choice of the convective constants, that satisfies
the ðn� 1Þth derivative and another that satisfies the nth, if the ðn þ 1Þth
derivative is not satisfied at all. In this study, it has been considered sufficient
that the interpolation (17) leads clearly to much smoother functions com-
pared to (16), which is affected by the near-neutral behaviour of (7).

4. Analytical Relations for Wu;t Functions

A problem that arises from the use (17) is the calculation of the corre-
sponding flux–profile relations Wu;tðfÞ. By introducing the gradients given by
(17) into (8), the general solution can be written as

Wu;t fð Þ ¼ Au;tðfÞ � Au;tð0Þ þ Bu;tðfÞ � Bu;tð0Þ; ð19Þ
where Au;tðfÞ and Bu;tðfÞ are determined from

Au;tðfÞ ¼
Z

df
f
�
Z

c2/Ku;t fð Þ
f c2 þ f2
� 	df; ð20Þ

which corresponds to the influence from the Kansas forms (6), and from

Figure 1. /u;t fð Þ given by interpolating through (17) between (6) and (7) and their first
derivatives, d/u;t fð Þ=df given by (18), for different choices of parameter aCu ¼ 5 (continuous
thin lines), 10 (continuous heavy lines), 40 (dashed lines) and aCt ¼ 15 (continuous thin lines),

34 (continuous heavy lines), 100 (dashed lines). In all cases cu;t ¼ 16 and c ¼ 1.
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Bu;tðfÞ ¼ �
Z

f/Cu;t fð Þ
c2 þ f2
� 	df; ð21Þ

the part of the solution inserted due to the convective forms (5) or (7).
The above integrals can be easily calculated through numerical integra-

tion. However, in order to assure accuracy, an analytical solution has been
derived herein, with aCu;t, cu;t and c as independent, free variables. More
specifically, in the case of the wind-speed profile, the integral AuðfÞ is given
from the following formulation:

AuðfÞ¼
1þcu1 c2u3� cu1

� 	
2cu1cu2cu3

� �
ln

x2þ cu3xþ cu1
x2� cu3xþ cu1

� �
þ

1þ cu1 c2u4� cu1
� 	

2cu1cu2cu4

� �

� ln
x2�cu4xþ cu1
x2þcu4xþ cu1

� �
þ 3c2u1�cu1c

2
u3þ1

cu1cu2cu4

� �
arctan

2xþcu3
cu4

� ��

þarctan 2x�cu3
cu4

� ��
� 3c2u1�cu1c

2
u4þ1

cu1cu2cu3

� �
arctan

2xþcu4
cu3

� ��

þarctan 2x� cu4
cu3

� �
þ ln x2þ1

� 	
þ2lnðxþ1Þ�2arctan xð Þ;

ð22Þ

where the introduced variables are x ¼ ð1� cufÞ1=4, cu1 ¼ 1þ c2uc
2

� 	1=4
,

cu2 ¼ 2c2u1 þ 2
� 	1=2

, cu3 ¼ 2cu1 � cu2ð Þ1=2 and cu4 ¼ 2cu1 þ cu2ð Þ1=2. By setting

f ¼ 0 in (22), the constant Auð0Þ is calculated directly as

Auð0Þ ¼
�p
2
þ

1þ cu1 c2u3 � cu1
� 	

2cu1cu2cu3

� �
ln

1þ cu3 þ cu1
1� cu3 þ cu1

� �

þ
1þ cu1 c2u4 � cu1

� 	
2cu1cu2cu4

� �
ln

1� cu4 þ cu1
1þ cu4 þ cu1

� �
þ 3c2u1 � cu1c

2
u3 þ 1

cu1cu2cu4

� �

� arctan
2þ cu3

cu4

� �
þ arctan

2� cu3
cu4

� �� �
� 3c2u1 � cu1c

2
u4 þ 1

cu1cu2cu3

� �

� arctan
2þ cu4

cu3

� �
þ arctan

2� cu4
cu3

� �� �
þ lnð8Þ:

ð23Þ

Similarly, for the temperature profile, the solution for integral AtðfÞ yields

E. AKYLAS AND M. TOMBROU388



AtðfÞ ¼ ln yþ 1ð Þ2þ ct1 þ 1

2ct1ct2

� �
ln

y2 þ ct2yþ ct1
y2 � ct2yþ ct1

� �
þ 1� c�1t1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ct1 � c2t2

q
0
B@

1
CA

� arctan
2yþ ct2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ct1 � c2t2

q
0
B@

1
CAþ arctan

2yþ ct2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ct1 � c2t2

q
0
B@

1
CA

2
64

3
75;

ð24Þ

where y ¼ 1� ctfð Þ1=2, ct1 ¼ 1þ c2t c
2

� 	1=2
and ct2 ¼ 2þ 2ct1ð Þ1=2. As in the

previous case, the constant Atð0Þ becomes

Atð0Þ ¼ lnð4Þ þ ct1 þ 1

2ct1ct2

� �
ln

1þ ct2 þ ct1
1� ct2 þ ct1

� �
þ 1� c�1t1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ct1 � c2t2

q
0
B@

1
CA

� arctan
2þ ct2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ct1 � c2t2

q
0
B@

1
CA

2
64 þ arctan

2� ct2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ct1 � c2t2

q
0
B@

1
CA
3
75: ð25Þ

In the case of integral Bu;tðfÞ ,the general solution is the same for both the
wind speed and temperature profiles. However, two choices for the type of
the convective form have been discussed here, namely Equations (5) and (7).
If the first form is used in (21), the integral Bu;tðfÞ (called B1u;tðfÞÞ results in
the following simple expression

B1u;tðfÞ ¼
�c�1=3

2a1=3Cu;t

arctan
�3ð�f=cÞ1=3 �f=cð Þ2=3�1

� �

�f=cð Þ2=3�1
� �2

�2 �f=cð Þ2=3

0
B@

1
CA

2
64

þ�
ffiffiffi
3
p

2
ln

ffiffiffi
3
p
þ 2 �f=cð Þ1=3

� �2
þ1

ffiffiffi
3
p
� 2 �f=cð Þ1=3

� �2
þ1

0
B@

1
CA
3
75: ð26Þ

From (26) it follows that, in this case, the constant B1u;tð0Þ is always zero,
independent of the free parameters, aCu;t, cu;t and c:

B1u;tð0Þ ¼ 0: ð27Þ
If the convective forms given by (7) are used instead, the analytical solu-

tion for Bu;tðfÞ (called B2u;tðfÞÞ yields the following, more complicated
expression:
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B2u;t fð Þ¼ �aR
4 aj j2

ln
z4�2aRz3þð3a2R�a2I
� 	

z2�2aR aj j2zþ aj j4

z2þ2aRzþ aj j2
� �2

0
B@

1
CA

þ�
ffiffiffi
3
p

aR
2 aj j2

arctan

ffiffiffi
3
p

aRz�2
ffiffiffi
3
p

aj j2

2 aj j2�4z2þ4aRz

 !

þ
ffiffiffi
3
p

a1
4 aj j2

ln

ffiffiffi
3
p

aRþaI
� 	2þ 2zþ

ffiffiffi
3
p

aI�aR
� 	2

ffiffiffi
3
p

aR�aI
� 	2þ 2z�

ffiffiffi
3
p

aI�aR
� 	2

 !

þ aI
2 aj j2

arctan
3aIz3�3aI aj j2z

z2þ2aRzþ aj j2
� �2

�6 aj j2z2�3aRz3�3aR aj j2z

0
B@

1
CA;

ð28Þ
where z ¼ 1� aCu;tf

� 	1=3
, and aR and aI represent, respectively, the real and

the imaginary part of the complex number �1þ iaCu;tc
� 	1=3

and
aj j ¼ a2R þ a2I

� 	1=2
. Then, the constant B2u;tð0Þ results in:

B2u;tð0Þ ¼
ffiffiffi
3
p

aI
4 aj j2

ln

ffiffiffi
3
p

aR þ aI
� 	2þ 2þ

ffiffiffi
3
p

aI � aR
� 	2

ffiffiffi
3
p

aR � aI
� 	2þ 2�

ffiffiffi
3
p

aI � aR
� 	2

 !

þ �aR
4 aj j2

ln
1� 2aR þ ð3a2R � a2I Þ � 2aR aj j2þ aj j4

1þ 2aR þ aj j2
� �2

0
B@

1
CA

þ�
ffiffiffi
3
p

aR
2 aj j2

arctan

ffiffiffi
3
p

aR � 2
ffiffiffi
3
p

aj j2

2 aj j2�4þ 4aR

 !

þ aI
2 aj j2

arctan
3aI � 3aI aj j2

1þ 2aR þ aj j2
� �2

�6 aj j2�3aR � 3aR aj j2

0
B@

1
CA:

ð29Þ
In Figure 2, the results of Equation (19), for both wind speed and tem-

perature functions, are illustrated for a variety of aCu;t values. The calcula-
tions refer to the solution for Bu;tðfÞ given by (28), with cu;t ¼ 16 and c ¼ 1.
As expected, the functions have a smooth, physically acceptable behaviour;
this applies also to the case of the simpler Equation (26) that produces almost
identical curves. The corresponding results from (14) are also presented in the
same Figure 2.

From the comparison follows that the results of (14) coincide (within
�1%) with the new approach only for the specific choice aCu ¼ 10 and
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aCt ¼ 34. For other choices of the convective constants there is strong
deviation between the two methods, which appears as an almost parallel shift
of the convective part of (14) for �f > 1. This behaviour suggested the idea
of fitting the complicated Equations (19)–(29) with a much simpler form,
through a modification of (14). After evaluating several approaches, it was
concluded that an excellent approximation obtains by a simple vertical and
horizontal translation of the convective form, WCu;t fð Þ given by (12), in (14).
Incorporating this translation, (14) becomes:

Wu;tðfÞ ¼
c2WKu;tðfÞ þ f2 WCu;tðfþ faÞ þ DðcÞ

� 	
c2 þ f2

: ð30Þ

In (30) the correcting factor DðcÞ is the vertical difference between WKu;t fð Þ,
given by (10) or (11) for the wind speed and temperature, respectively, and
WCu;t fð Þ, given by (12), at �f ¼ c:

Figure 2. Wu;t fð Þ, resulting from the new Equation (17) (continuous heavy lines) and (14)

(continuous thin lines), for different choices of parameters aCu;t with cu;t ¼ 16 and c ¼ 1.
Their relative difference (%) (dashed lines; right axis) is also illustrated, for a quantitative
comparison.
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DðcÞ ¼ WKu;tðcÞ �WCu;tðcÞ: ð31Þ
The value fa for the horizontal translation is calculated through

WCu;tðfaÞ ¼ �DðcÞ; ð32Þ
so that the translated convective part, WCu;tðfþ faÞ þ DðcÞ, returns 0 at the
neutral limit. The last translation is restricted by the fact that the maximum
value for fa must be less than 1=aCu;t, to ensure ð1� aCu;tfaÞ > 0. However,
this limitation was found to be less restrictive than the demand imposed upon
(17) to have continuous and monotonic first derivative. For cu;t ¼ 16 and
c ¼ 1, (30) differs from the original exact solution (19)–(29) by less than
�1%, in the ranges 3 < aCu < 40 and 15 < aCt < 100.

5. Discussion

The interpolation according to (17) provided functions that permit quite a
wide range for the values of convective constants aCu;t. Unlike (14), the
behaviour of the convective forms /CðfÞ, given by (5) or (7), at low insta-
bilities does not affect the results markedly. This differentiation is important
because the use of convective forms could prove inadequate for many
applications. This is due to the, possibly, poor fitting of the convective
functions /C near the neutral stability limit, which affects the results strongly
in terms of WCðfÞ forms. In other words, the integration of /CðfÞ, via (8) in
the range [0, f �1], overestimates or underestimates the respective results of
the Kansas-type functions. This deviation is maintained and distorts the
results for WCðfÞ, although the behaviour of /CðfÞ may be appropriate at the
free convection limit.

The functions that have been investigated are intended for use, mostly, in
the calculation of surface fluxes. In order to examine the impact of the above
forms, wind speed and temperature profiles have been produced. More
specifically, the profiles of the dimensionless wind speed, kUðfÞ=u�, and
temperature, kDhðfÞ=h�, are illustrated in Figure 3 for different values of the
convective constants aCu;t. The calculations have been done for the values of
the dimensionless roughness length, f0, 0.01 and 1. The first is a low value
that corresponds to smooth surfaces for low or moderate instability. For this
choice, it becomes clear that the profiles produced through (19) coincide with
the established Kansas estimates for low instability and then follow a con-
vective shape. Despite the large variation of aCu;t, all the resulting profiles
have a smooth shape. For aCu ¼ 5 and aCt ¼ 100 the profiles are almost
identical to the Kansas ones, while for aCu ¼ 10 and aCt ¼ 34 they almost
coincide with the convective profiles resulting from (12), since for this choice
of the convective constants the differences between WCðfÞ and WKðfÞ
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diminish for �f < 1. In fact, this is the reason for Grachev et al. (2000)
choosing that specific set of values for their interpolation applied directly to
the W functions in (14). However, it must be pointed out that the relative
differences among all profiles produced in this work by using aCu > 5 and
aCt > 15 are about 5% (low sensitivity). This is attributed to the fact that the
largest portion of the profile’s change occurs at the lower instability range,
where the Kansas-type shape has been kept constant, independent of the

Figure 3. Profiles of the dimensionless wind speed, kUðfÞ=u�, and temperature, kDhðfÞ=h�, for
different values of the convective constants aCu;t, and for f0u;t equal to 0.01 and 1. The wind
speed profiles have been calculated through (9) by using the definitions for Wu fð Þ, given by (10)
(heavy dashed lines), (12) (crosses) and (19) (heavy continuous lines). The temperature profiles

have been calculated through (9) by using the definitions for Wt fð Þ, given by (11) (thin dashed
lines), (12) (open circles) and (19) (continuous thin lines).
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values of the convective parameters. On the other hand, the convective
profiles based on (12) show a strong dependence on the value of the con-
vective constants, as would be expected. The influence of this dependence
extends to the near-neutral regime, therefore such forms should be used only
when the profile departs from very large f0 values. This is corroborated also
from the investigation of the profiles that depart from f0 ¼ 1; these profiles
thus refer to a development over rough surfaces during strong instability. For
such cases the shape of the profile for low values of f loses its importance. As
a result, the interpolation introduced by (17) leads to almost the same vertical
distribution as the convective form (7). Additionally, the dependence of the
profile on the choice of aCu;t becomes profound, resulting in a relative dif-
ference between each choice greater than 25%. Larger values of those con-
stants result in lower values of dimensionless wind speed and more efficient
mixing (larger values for u�) during low wind speeds and strong instability.
This behaviour may prove to be very important in the flux calculation and in
the ‘minimum friction velocity’ for free convection conditions (Businger,
1973; Akylas et al., 2001).

The above results clarify the importance of a correct estimation of the
convective constants through the fitting of the theoretical forms (either
Equations (5) or (7)) on experimental data. The fitting should apply to strong
instability, where these types are most suitable. For lower instabilities,
however, Kansas-types are a generally accepted representation. The impor-
tance of which part of the unstable regime is used, in order to estimate the
convective constants, can be shown from the following examples that use
experimental measurements.

In Figures 4a and b measurements published by Carl et al. (1973) and
Businger et al. (1971) are illustrated, showing values of /uðfÞ and /tðfÞ,
respectively. In the first figure, Carl et al. (1973) obtained aCu ¼ 16 by fitting
(7) to the whole dataset. If the fitting is applied just to the range �f > 1, the
previous value should be modified to aCu ¼ 30. In that case, the interpola-
tion given by (17) describes the whole range very well. In Figure 4b, fitting
(7) to the whole dataset results in a convective constant, aCt ¼ 65, while
focussing on data with �f > 1, leads to an enhanced value of aCt ¼ 100. A
good overall behaviour is achieved by using the second value in the inter-
polation according to (17).

It is noted here that the previous simplified examples are not intended for
the deduction of particular values of the convective constants, but only to
outline the importance of a suitable functional form for fitting experimental
data. Thus, possible problems with the need for corrections concerning the
presented measurements (Wieringa, 1980) have not been taken into account
in this work. For the evaluation of exact values, experimental data of high
quality under very strong instability are therefore required. This is a chal-
lenging task for further research.
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6. Conclusions

We have shown in this study that the possible poor fitting of the convec-
tive gradient relations, /Cu;t fð Þ, at near-neutral stability, affects the
results markedly in terms of WCu;t fð Þ functions and the corresponding ver-
tical profiles. Such functions could be used only over very rough sur-
faces during strong instability due to the large value of f0 ð�1Þ that
eliminates the near neutral dependence, since the integration starts from

(a)

(b)

Figure 4. (a) Measurements of /u fð Þ, based on experimental data (points) by Carl et al. (1973),
as well as, (7) for aCu ¼ 16 (dotted line), (6) for cu ¼ 16 (dashed line), (7) for aCu ¼ 30
(continuous thin line) and their interpolation, given by (17) (continuous heavy line).

(b) Measurements of /t fð Þ, based on Kansas experimental data (points) by Businger et al.
(1971), as well as, (7) for aCt ¼ 65 (dotted line), (6) for ct ¼ 16 (dashed line), (7) for
aCt ¼ 100 (continuous thin line) and their interpolation, given by (17) (continuous heavy line).
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large values of f. The choice of values of the convective constants aCu;t
becomes then very important for the profile shape and the flux calculations.

Unlike previous work, which has focused on flux–profile relations, an
interpolation between Kansas-type and convective forms has been applied
directly to the relevant gradient functions, in order to produce functions
appropriate for the whole unstable range. Exact expressions have been de-
rived for the W forms through analytical quadrature. The new treatment
results in smooth and monotonic functions for a wider range of aCu;t choices.
Thus, the appropriate values of these constants could be determined by
comparison with experimental data. Using the derived W forms as standards,
a simple interpolation procedure has been elaborated that is based on the
established Kansas-type and convective flux–profile relations. The proposed
efficient interpolation procedure affords an accuracy of �1% and can be used
in modelling applications, covering every case with f < 0.
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