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Analytical solution of transient flow in a sloping soil layer 
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EVANGELOS AKYLAS1*, ANTONIS D. KOUSSIS1 & 
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Abstract An analytical solution of planar flow in a sloping soil layer described by the linearized 
extended Boussinesq equation is presented. The solution consists of the sum of steady-state and 
transient-series solutions, the latter in a separation-of-variables form, and can satisfy an arbitrary initial 
condition via collocation; this feature reduces the number of series terms, making the solution efficient. 
Key parameter is the dimensionless linearization depth ηo(R), R being the dimensionless recharge. The 
variable ηo(R), not the slope, characterizes the flow as kinematic or diffusive, and R ≈ 0.2 demarcates 
the two regimes. The transient series converges rapidly for large ηo (large R, near-diffusive flow) and 
slowly as ηo → 0 (kinematic flow). The quasi-steady (QS) state method of Verhoest & Troch is also 
analysed and it is shown that the QS depth profiles approximate the transient ones well, only if Δt 
exceeds a system-dependent transition time between flow states (possibly >>1 day). In an application 
example for a 30-day recharge series, the QS solution differs from the transient one by as much as 20% 
(RMSE  = 15%), does not track recharge changes as well and fails to conserve mass.  
Key words analytical solution; hillslope flow; quasi-steady flow; recharge; subsurface stormflow 

Solution analytique d’un écoulement transitoire dans une couche de sol en pente 
avec recharge 
Résumé Nous présentons une solution analytique d’un écoulement planaire dans une couche de sol en 
pente décrit par l’équation de Boussinesq linéarisée. La solution est la somme d’une composante 
continue et d’une série de transitoires, ces dernières étant exprimées sous forme de séparation des 
variables. Cette solution peut satisfaire une condition initiale arbitraire par collocation, ce qui diminue le 
nombre de transitoires et fournit une solution plus performante. Le paramètre clef est la profondeur de 
linéarisation ηo (R), adimensionnelle, en fonction du paramètre adimensionnel de recharge R. La variable 
ηo (R), et non la pente, détermine le caractère cinématique ou diffusif de l’écoulement, et R ≈ 0.2 marque 
la transition entre les deux régimes. La série de transitoires converge rapidement pour les fortes valeurs 
de ηo (pour R important, écoulement presque diffusif) mais converge lentement lorsque ηo → 0 
(écoulement cinématique). Nous analysons également la méthode  de l’état quasi-continu (QC) de 
Verhoest & Troch et montrons que les profils de profondeur de QC se rapprochent de ceux des 
transitoires seulement si Δt dépasse un temps de transition, dépendant du système, entre les différents 
états de l’écoulement (potentiellement >> 1 jour). En prenant pour exemple une série de recharge de 30 
jours, la solution QC diffère de celle des transitoires de plus de 20% (RMSE = 15%), ne suit pas les 
changements de recharge et échoue à conserver la masse. 
Mots clefs solution analytique; écoulement de versant; écoulement quasi-continu; recharge;  
écoulement événementiel de subsurface 
 
 
NOTATION 
 
The notation y, Y = … refers to a dimensional and a non-dimensional quantity, 
respectively. 
A, B constants in the steady-state solution; 
C constant in the time-dependent function of the transient solution; 
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c1, c2 and c1i, c2i   coefficients in the series of the transient solution; 
F(X, T) transient part of the solution, postulated in product form = φ(X) ψ(T); 
G(X) steady-state part of the solution; 
h, H flow depth measured as height of water column normal to the bed; 
ho, Ho linearization depth of flow in the porous layer; 
K hydraulic conductivity of porous layer;  
L length of porous layer; 
m α,β roots of characteristic equation of spatial differential equation; 
n drainable porosity (specific yield) of porous layer; 
q, Q discharge per unit width; 
r, R recharge rate; 
r* recharge rate used in the quasi-steady-state solution; 
S = sin ϕ   slope of soil layer’s base; 
t, T time; 
x, X distance measured along the soil layer’s base; 
ηo linearization parameter = Ho cosϕ; 
λ, λi parameters in exponential function of transient series solution; 
μ, μi parameters in trigonometric spatial series in transient solution; 
ρ = r/K ratio of recharge rate to hydraulic conductivity; 
σ = S(1 – ρ)   reduced slope; 
τ duration of a recharge pulse; and 
ϕ angle of inclination of soil layer base. 
 
 
INTRODUCTION 
 
Flow through a soil layer resting on an inclined bed is essential for the hydrology of 
upland watersheds (storm or baseflow) and is related to the interflow; it also occurs in 
landfills as lateral flow to leachate collection drains installed above liners. Recharge 
(rate r per unit horizontal area) infiltrating through the soil accumulates over a low-
conductivity bed forming a saturated flow layer, as shown in Fig. 1. In the hydraulic 
description of unconfined flow through a porous medium of hydraulic conductivity K 
and drainable porosity n (specific yield), known as the Dupuit-Forchheimer theory, the 
pressure in the water column of height h normal to the bed is taken as hydrostatic. 
Accordingly, discharge per unit width (planar flow), at time t and at location x, 
measured from the top of hill along the inclined base of length L and angle ϕ against 
the horizontal (S = sinϕ), is (e.g. Wooding & Chapman, 1966): 

)cos(),( ϕ
∂
∂

−=
x
hKKShtxq  (1) 

Combining equation (1) with the storage balance equation (Wooding & Chapman, 
1966): 

cos sinh q hn r r
t x x

∂ ∂ ∂
+ = ϕ +

∂ ∂ ∂
ϕ  (2) 

(the right-hand side derives from the scalar product of the recharge vector and the unit  
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Fig. 1 Cross-sectional schematic diagram of sloping soil layer, with definition of 
symbols. 

 
 
normal of a free surface element), yields the extended Boussinesq (1877) equation of 
unconfined flow over an inclined base:  

1 cos ( )h r h hn K S K h r
t K x x x

∂ ∂ ∂ ∂⎛ ⎞+ − − ϕ =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
cosϕ  (3) 

Chapman (2005) gives an excellent review of the governing equations, also comparing 
the solution of equation (3) to those of its linearized form. Henderson & Wooding 
(1964) neglected the last term in equation (2) and obtained equation (3) without the 
factor (1 – r/K). That equation has been adopted widely (e.g. Beven, 1981; Koussis & 
Lien, 1982; Koussis, 1992; Koussis et al., 1998; Verhoest & Troch, 2000; Pauwels et 
al., 2002; Basha & Maalouf, 2005) and holds for r/K << 1 (e.g. for r = 4 mm h-1 and 
K = 10 m day-1, r/K ≈ 0.01). Chapman (2005) showed that the mean steady flow 
depths, computed with and without the r/K term in equation (3), vary appreciably only 
for very large r/K values, r/K ≥ 0.1, say. Given that typically r/K < 0.05 and the 
uncertainty in the values of K and r, the approximation seems justified in many cases.  
 Based on the soil moisture storage concept of Fan & Bras (1998), Troch et al. 
(2003) developed and solved numerically subsurface stormflow models for a variable-
width hillslope; for constant width, these reduce to equation (3) (and upon lineariza-
tion, to equation (5) below). As Brutsaert (1994) points out, the schematization of the 
physical situation and Dupuit’s hydraulic treatment are trade-offs that enable para-
meterization of solutions for inclusion in complex models (Pauwels et al., 2002). The 
nonlinearity of equation (3) necessitates additional simplifications to allow analytical 
solutions. Of these, the most drastic is the kinematic wave (KW) approximation, 
proposed by Boussinesq (1877) and evaluated by Henderson & Wooding (1964) and 
by Beven (1981). The KW model postulates S >> |∂h/∂x| (clearly failing as ϕ → 0), 
whence q ≈ hKS and the term cosϕK∂(h∂h/∂x)/∂x in equation (3) is eliminated. 
 The Linear Advection-Dispersion (LAD) model, introduced by Koussis & Lien 
(1982) and studied by Koussis (1992), Brutsaert (1994), Koussis et al. (1998), 
Verhoest & Troch (2000) and Pauwels et al. (2002), among others, gives a closer 
approximation. It admits that gravity dominates the net pressure force, but retains the 
effect of the surface gradient in a linearized term of hydraulic diffusion. The LAD 
governing equations are:  
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x
hKhKShq o ∂

∂
ϕ−= cos  (4) 

2

21 coso
h r h hn K S Kh r
t K x x

∂ ∂ ∂⎛ ⎞+ − = ϕ +⎜ ⎟∂ ∂ ∂⎝ ⎠
cosϕ  (5) 

The linearization depth ho can be estimated, e.g., as fraction of the mean steady flow 
depth on the hillslope for recharge r (Koussis, 1992) (see equation (35) below).  
 Brutsaert (1994) derived an analytical LAD solution for drainage of an initially 
stagnant, uniform water block, which Verhoest & Troch (2000) extended to include 
recharge. This initial stagnant uniform depth is, however, unrealistic, as uniform depth 
with a free surface is not realizable in a finite domain; also, a free surface parallel to 
the inclined bed conflicts with the no-flow up-gradient boundary condition that pre-
scribes a horizontal water table (vanishing hydraulic gradient) (Koussis et al., 1998). It 
is this unphysical stagnant water block that causes the outflow oscillation after 
initiation of drainage. The water column near the outlet supplies the large outflow rates 
at t = 0+, generating steep gradients there; however, this condition cannot be 
maintained and subsequent outflows are more gravity-driven. For this reason, on steep 
slopes, the outflow can even rise slightly after an initial decline.  
 Chapman’s (1995) adaptation of Werner’s (1957) analytical solution for a recharge 
step starts from steady flow and reflects reality better; it is based on the h2-linearization 
of equation (3). Brutsaert (1995) argues in favour of the h-linearization because of its 
compatibility with the KW model for S >> |∂h/∂x|. Basha & Maalouf (2005) examine 
both linearizations. Verhoest & Troch (2000) solve equation (5), with r/K = 0, also for 
a steady initial flow and show that the soil layer’s response differs markedly from that 
for a stagnant initial uniform depth; for efficient calculations, they develop a quasi-
steady-state method (Polubarinova-Kochina, 1962).  
 The focus of this work is on an efficient analytical solution of the problem. Such a 
solution is presented for a recharge step that holds for arbitrary known initial con-
ditions (t = 0) such as a dry bed, a steady or a transient flow. Results are generalized by 
non-dimensionalization. The response to a finite-duration recharge pulse is obtained by 
combining build-up and recession solutions. Finally, a quasi-steady solution and the 
new analytical solution are compared in an application example, in which the response 
to a recharge series is given by superposition of properly timed individual pulse 
responses.  
 
 
NON-DIMENSIONALIZATION AND INITIAL AND BOUNDARY 
CONDITIONS  
 
Introducing the abbreviations ρ = r/K, σ = S(1 – ρ), the variables are normalized as 
follows:  

X = x/L; H = h/Lσ; Ho = ho/Lσ; T = tKσ/nL; R = rcosϕ/Kσ2; and Q = q/rcosϕL  (6) 

The dimensionless, inhomogeneous LAD equation governing the depth becomes thus:  
2

2coso
H H HH
T X X

∂ ∂ ∂
+ = ϕ +

∂ ∂ ∂
R  (7) 
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where Ho = ho/Lσ. The corresponding non-dimensional form of the discharge equation 
(4) reads: 

RQ = H/(1 – ρ) – Hocosϕ∂H/∂X  (8) 

As initial condition, the bed is assumed to be dry: 

h(x,0) = H(X,0) = 0  (9) 

At the upper boundary, no flow is assumed, q(0,t) = Q(0,T) = 0, whence equations (4) 
and (8) yield:  

cosϕ∂h/∂x|o = Sh(0, t)/ho  and  cosϕ∂H/∂X|o = H(0,T)/(1 – ρ)Ho (10) 

respectively (implies a solid barrier at right angle to the bed, as the depth is measured 
normal to the bed). This condition will be discussed after the development of the 
analytical solution. At the lower boundary x = L(X = 1), free drainage is assumed:  

h(L,t) = H(1,T) = 0  (11) 

(Hocosϕ)-1 is the cardinal parameter of the problem and a characteristic number of non-
dimensional transport equations such as equation (7): this is the Reynolds number of 
momentum transport and the Péclet number of mass and heat transport (e.g. Tennekes 
& Lumley, 1972). Henceforth the compact notation ηo = Hocosϕ = hocosϕ /LS(1 – ρ) is 
adopted.  
 
 
DEVELOPMENT OF GENERAL ANALYTICAL SOLUTION 
 
It is postulated that H(X,T) is configured as follows:  

)()()(),()(),( TXXFTXFXGTXH ψφ==+=   (12) 

where G(X) is the steady-state solution of the problem. Thus, upon introducing 
equation (12) into equation (7), the principal equation is split in the steady-state 
equation (13) and the transient equation (14): 

2

2
d ( ) d ( )

d do
G X G X R

X X
= η +  (13) 

2

2
( , ) ( , ) ( , )

o
F X T F X T F X T

T X X
∂ ∂ ∂

+ = η
∂ ∂ ∂

  (14) 

The solution of equation (13) is:  

( ) exp( )o
o

XG X A R X B= η + +
η

 (15) 

with constants A and B determined by the boundary conditions equations (10)–(11) as 
follows: 

( )
1 1

1
1 ; 1
exp exp

o
o

o o

A R B R
− −

−

⎡ ⎤⎛ ⎞−ρ+η −ρ+η
= − =η −ρ + ρ⎢ ⎜η −ρ η −ρ⎝ ⎠⎣ ⎦

1
1 o

− ⎥⎟   (16) 
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Then, combining of equations (12) and (14) leads to the dual relationships: 

"( ) ( ) ( )
( ) ( )

o X X T
X T

′η φ − φ ψ
= =

φ ψ
&

λ

T

 (17) 

prime and dot indicating d/dX and d/dT, respectively; thus λ = const. and equation (17) 
separates in: 

( ) ( )Tψ = λψ&  (18a) 

''( ) ( ) ( ) 0o X X X′η φ − φ − λφ =   (18b) 

The solution of equation (18a) is equation (19), with λ < 0 (asymptotic approach to a 
finite steady state): 

( ) exp( )T C Tψ = λ  (19) 

φ(X) = exp(mX) is postulated as solution of equation (18b), which holds when m 
satisfies the quadratic equation (20), with possibly complex roots mα,β (j = (–1)1/2, the 
imaginary unit): 

02
om mη − −λ =  (20) 

1 1 4 1 41
2 2 2 2

o o
,

o o o o

λ
m jα β

± + η + η λ
= = ± =

η η η η
1

± μ

2
o

 (21) 

2 (1 4 ) / 4oμ = − + η λ η  (22) 

The solution of equation (18b) is:  

( 1 2( ) exp cos sin
2 o

X )X c X c Xφ = μ + μ
η

 (23) 

Writing C = aR and absorbing the common factor a in c1 and c2, equations (19) and 
(23) yield:  

( 1 2( , ) ( ) ( ) exp cos sin exp( )
2 o

X )F X T X T R c X c X T= φ ψ = μ + μ λ
η

  (24) 

the superposing of which accommodates any initial condition in the solution of 
equation (14):  

( 1 2( , ) exp cos sin exp( )
2 i i i i i

io

X )F X T R c X c X T= μ + μ
η ∑ λ  (25) 

By equation (12), the sum of equations (25) and (15) (A and B from equation (16)) 
yields the solution of equation (7):  

( )1 2( , ) exp( ) exp cos sin exp( )
2o i i i

io o

X X
i iH X T A R X B R c X c X T= η + + + μ + μ λ

η η ∑  (26) 

The number and the values of the coefficients c1i and c2i and of the parameters μi and 
λi remain to be determined through implementation of the initial and boundary con-
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ditions. With equation (26), boundary condition equation (10), ∂H/∂X|o = H(0,T)/ 
(1 – ρ)ηo, translates to: 

∑ ∑ λμ=λ
ηρ−

ρ+

i
i

i
iii

o

i TcT
c

)exp()exp(
21

1
2

1   (27) 

For equation (27) to be valid for every T, c1i and c2i must obey the relationship: 

)1/()1(2/ 21 ρ+ρ−μη= ioii cc   (28) 

With relationship equation (28) and the convention ci = c1i, the general solution 
equation (26) simplifies to: 

1 sin( , ) exp( ) exp cos exp( )
2 1 2

i
o i i

io o o i

X X X
iH X T A RX B R c X T

⎛ ⎞ ⎛ ⎞+ρ μ
= η + + + μ + λ⎜ ⎟ ⎜ ⎟η η −ρ η μ⎝ ⎠ ⎝ ⎠

∑  (29)  

Further, implementation of the boundary condition H(1,T) = 0, equation (11), yields: 

∑ =λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μη
μ

ρ−
ρ+

+μ
i

i
io

i
ii TXc 0)exp(

2
sin

1
1cos   (30) 

Since ci ≠ 0 and exp(λiT) ≠ 0, the term in parenthesis vanishes, yielding the implicit 
relation:  

1 tan / 2
1i
+ρ

μ = − μ η
−ρ i o  (31) 

From equations (31) and (22) follows that λ ≤ –(4ηo)-1 and the mα,β roots of equation 
(21) are complex.  
 To fully define H(X,T), the coefficients ci are determined such that equation (29), 
for T = 0, satisfies equation (9) (or any other initial condition) at k points. The 
procedure, whereby two functions are exactly matched at k freely selectable points, is 
called collocation and yields a system of k linear equations for k parameters ci; 
k controls the desired accuracy (see next section).  
 With the H(X,T) defined, the flow rate can be evaluated from equation (8), giving:  

2
1 1( , ) exp( ) 1 exp sin exp( )

1 1 2 1 4
o

i o i i i
io o o i

A X X XQ X T c X T
R

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞η ρ +ρ
= − + + ημ + μ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟−ρ η −ρ η −ρ ημ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦

∑ λ  (32) 

The coefficients ci can be also determined from the system of linear equations obtained 
by collocating equation (32), for T = 0, with the initial flow rate Q(X,0) = 0. The 
quantity of prime hydrological interest, the outflow at the hill base, is obtained for 
X = 1:  

( )
2

1 1 1 1(1 ) exp exp sin exp( )
2 1 4

o
o o i o i i i

io o i

AQ ,T c T
R

−
⎡ ⎤⎛ ⎞ ⎛ ⎞η +ρ

= − η −η + η μ + μ λ⎢ ⎥⎜ ⎟ ⎜ ⎟η −ρ η μ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦
∑  (33) 

In summary, to use equation (29) and equation (32): (a) estimate ηo(R) (see equation 
(35)), (b) calculate the μi values from equation (31) and, with these in equation (22), 
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the corresponding λi values and (c) determine the coefficients ci by collocating 
equation (29) or equation (32), for T =  0, and the initial condition at k points.  
 The solution cannot describe flow in a horizontal soil layer. For S = 0, equation (5) 
reduces to a diffusion equation in h/L, x/L, t/nKL, R = r/K, for which the separation-of-
variables solution approach gives the closed-form expression, with steady-state part 
(R/2Ho)(1 – X2) and periodic transient part (mi is imaginary and λi/Ho = –μi

2 =  
[(2i – 1)π/2]2): 

( )
2

2 2
3 3

0

32 ( 1) 2 1 (2 1)( , ) 1 cos exp
2 (2 1) 2 4

i

io

R iH X T X X T
H i

∞

=

⎡ ⎤⎛ ⎞− − −⎛ ⎞= − + π − π⎢ ⎥⎜ ⎟⎜ ⎟π + ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ i

]

  (34) 

 
 
DISCUSSION AND ASSESSMENT OF THE LAD SOLUTION  
 
Relationships (29) and (32) reveal the linearization parameter ηo as cardinal for the 
problem, since from equation (31) μ(ηo) and from equation (22) λ(μ(ηo),ηo). At steady 
state, ηo is postulated as the mean flow depth, which is the integral of equation (15) 
over the normalized slope length, 1 (Koussis, 1992). Since the mean steady flow 
depths computed with and without the term rsinϕ∂h/∂x in equation (2) differ little if 
r/K ≤ 0.1, equation (16) is used with r/K = 0 to estimate ηo to obtain:  

[∫ η−−+ηη−η+>=≡<=η
1

0

)/1exp(1)1(5.0)(d)()( ooooo RRRRGXXGR  (35) 

Ignoring exp(–1/ηo) (≤0.1 if R ≤ 2) yields a quadratic, with solution ηo(R) =  
[(1 + 2R2)½ – 1]/2R. The maximum error of this solution is under 1% for R ≤ 1, rising 
to 6% at R = 2, relative to an iterative solution of equation (35) (evaluate exp(–1/ηo) 
approximately, then update the quadratic with the result of equation (35) and repeat). 
Figure 2 shows the agreement of the linear with the nonlinear steady-state solution to 
be generally good and expectedly better for low R values. 
 The linearization basis may be found by calibration (Brutsaert, 1994; Verhoest & 
Troch, 2000), yet it should be kept in mind that, according to equation (35), ηo =  
<G(R)> cosϕ and thus it is not a constant parameter. The dependence ηo(R) points to the 
flow’s nonlinearity; if gravity dominates, ηo → 0 and, of course, the linear KW solution 
holds. Given the determinant role of ηo in the solution behaviour and the ηo(R) 
variability manifested in Table 1, ηo should be linked to the recharge, so that flows from 
r(t) may be better tracked. To calculate transient flow in the case of an initially dry soil 
layer recharged with rstep (t > 0), 0.5ho(rstep) may be used as linearization depth, as done 
in the calculation of the depth profiles and outflow hydrographs shown in Figs 3 and 4.  
 It is widely recognized that kinematic flow implies steep slopes. However, a slope-
referenced characterization holds largely, not strictly. The flow is controlled by ηo(R), 
and R ≈ rcosϕ/KS2; thus, indeed, the slope influences R more than the hydraulic 
conductivity or the recharge rate, but not exclusively. Beven (1981) presents related 
results in his Figures 3 and 5. For example, in two hydrogeologically identical soils 
(K1 = K2) lying on different slopes, flow behaviour is the same if their R values are the 
same, i.e. r1/S1

2 = r2/S2
2, e.g. 1 mm h-1/0.12 = 4 mm h-1/0.22. Similarly, two soil  
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Fig. 2 Nonlinear (solid lines) and linear (dashed lines) depth profiles at steady state. 

 
 
Table 1 Values of parameters μi and λi in series solutions equations (29) and (32). 

R ηo 
a  μ1 μ2 μ3 λ1 λ2  λ3 

0.125 0.031 2.960 5.931 8.920 –8.332 –9.151 –10.528 
0.250 0.062 2.810 5.675 8.612 –4.540 –6.040   –8.628 
0.500 0.121 2.588 5.374 8.320 –2.880 –5.557 –10.425 
0.750 0.176 2.442 5.220 8.195 –2.473 –6.196 –13.176 
1.000 0.224 2.344 5.131 8.128 –2.346 –7.004 –15.885 
2.000 0.364 2.157 4.992 8.031 –2.381 –9.758 –24.162 
a 1/2 of the solution of equation (35) (assumes infinite duration recharge step). 
 
 
layers lying on different slopes, but recharged equally, are hydraulically equivalent, 
provided K1S1

2 = K2S2
2, e.g. 10 m day-1 (0.1)2 = 2.5 m day-1 (0.2)2. Noteworthy is that 

the flow in the same medium is more kinematic or more diffusive depending on the 
recharge; e.g. with S = 0.1 and K = 10 m day-1, R = 0.24 (near-kinematic) for r =  
1 mm h-1 and R = 0.96 (diffusive) for r = 4 mm h-1. An approximate kinematic-
diffusive limit is R = 0.2. 
 The postponed discussion of zero flow at x = 0, q(0, t) = 0 will be now continued. 
The nonlinear flow relation equation (1) yields (in addition to h = 0) ∂h/∂x|o = S/cosϕ = 
tanϕ, indicating a horizontal water surface. In contrast, the linearized flow relationship 
equation (4) gives ∂h/∂x|o = tanϕh(0,t)/ho, i.e. an inclined water surface that deviates 
from the horizontal according to h(0,t)/ho. Assessing ∂h/∂x|o for steady flow by using 
equations (15)–(16) (with A and B for ρ = r/K = 0, to simplify the algebraic expres-
sions) and after converting to dimensional quantities via equation (6), one obtains:  

∂h/∂x|o = tanϕ{R[1 – (1 + ηo
-1) exp(–ηo

-1)] cosϕ} (36) 
The ratio ∂h/∂x|o/tanϕ depends mainly on R, since cosϕ varies weakly (e.g. 0.866 ≤ 
cosϕ ≤ ~1.000 in the range 1°≤ ϕ ≤ 30°). For ηo → 0, ∂h/∂x|o → Rsinϕ = r/Ksinϕ, as  
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Fig. 3 Non-dimensional depth profiles H(X,T): build-up (——) and drainage (•••) 
phases, at T = 0.1, 0.2, 0.4, 0.7, 1 after the initial and the steady state (──), 
respectively. 
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Fig. 4 Non-dimensional outflow hydrographs, Q(1,T), in the build-up and drainage 
phases. 

 
 
the solution tends to the KW approximation (and h(0) → 0), while the flow turns more 
diffusive for R > 0.2 (ηo ≠ 0). The best-fit relationship ∂h/∂x|o/tanϕ ≈ (1.09R – 0.33R2) 
cosϕ holds in the range 0 ≤ R ≤ 1. 
 Verhoest & Troch (2000) used 999 to 9999 terms (more on steeper slopes) to 
evaluate their series solution. In contrast to a rigidly sequential evaluation, the series in 
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equations (29) and (32) converge faster after collocation. Again, the lower the R value 
(kinematic tendency), the stiffer the profile and the more terms are needed (in Table 1, 
the exponents –λi rise slowly for low R), especially at early times. For example, results 
for R = 0.25 at T = 0.1, computed with 50 and 10 terms, are identical to five decimal 
places, while the 50- and 20-term solutions agree to six decimal places (k = 10, 20, 50 
collocation points spread evenly over the slope length, plus an endpoint, where the 
initial condition Q|X = 0 = 0 or H|X = 1 = 0 is satisfied). In contrast, for R = 0.125, the  
50- and 10-term solutions agree only to one decimal place at T = 0.1; 20 collocation 
points give agreement to five decimal places. The larger number of series terms 
required as R decreases hints that the second-order term in equation (7), which controls 
the nature of the solution and its stiffness, progressively loses significance and that the 
KW model may be adequate.  
 
 
ASSESSMENT OF THE QUASI-STEADY SOLUTION OF VERHOEST & 
TROCH  
 
Next, the quasi-steady (henceforth QS) state method of Verhoest & Troch (2000) is 
examined for rapid calculations. That method references the transient outflow from r, 
q(L,t′), to a QS state by selecting a recharge rate r* such that the transient depth profile 
at t′ is fitted by the steady-state solution for q(L,t′) = r*L. The QS solution approxi-
mates the transient one well if the computational transition time between states, Δt, 
suffices for the flow to adjust. However, such an adjustment depends on the system 
parameters, as shown below for transitions in daily time steps (a typical increment in 
watershed modelling). For example, the simulation of the transient response by means 
of steady-state solutions requires appropriate temporal filtering of either data and/or 
model parameters (Adams & Koussis, 1980).  
 The parameters of the application example of Verhoest & Troch (2000) are: 
hydraulic conductivity: K = 10-3 m s-1 = 86.4 m day-1; drainable porosity: n = 0.34; 
angle: ϕ = 2° or slope S = 0.0349; and length: L = 100 m. With these parameters,  
Δt = 1 day gives ΔT1 = Δt⋅KS/(nL) = 0.089. Given the very high K value, the non-
dimensional time for flow adjustment is short; thus Δt = 1 day in watershed modelling 
would be compatible with the QS approximation. But if the less extreme, yet still 
sizeable K = 10-4 m s-1 = 8.64 m day-1 were used, all other parameters remaining 
unchanged, ΔT1 = 0.0089; this interval is likely insufficient for flow adjustment and 
the QS approach may be inappropriate in watershed modelling.  
 This is illustrated in an example with common parameter values: K ≈ 5.8 ×  
10-5 m s-1 (5 m day-1), n = 0.25, ϕ = 10° (S = 0.174), L = 100 m, r = 3.25 mm h-1 and  
r/K = 0.015; thus R = 0.53 and ηo = 0.125 (ho ≈ 2.17 m). Initial condition is steady 
flow for r = 0.25 mm h-1 (r/K = 0.001; R = 0.04). In Fig. 5, the QS approximation of 
the transient profiles appears worsening as Δt decreases; Δt = 1 day corresponds to ΔT1 
= 0.034. The QS solution inevitably fails at early times and approaches the new steady 
state gradually. This behaviour holds for all R; differences concern only the time 
needed for adjustment.  
 Verhoest & Troch (2000) derive an analytical solution—their equation (28)—on 
the premise of an initial steady flow for recharge rate r*. That solution gives the  
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Fig. 5 Exact transient (──) and quasi-steady (——) depth solutions h (x,t). 

 
 
response of the soil layer to a constant rate r, assuming the same linearization depth ho 
for r* and r. This assumption is acceptable if the recharge varies mildly, as in the 
example of Figure 6 in Verhoest & Troch (2000). By physical reasoning, however, ho 
= ho(r), as ho reflects the range of depths in a soil layer, which varies with the recharge; 
for example, ho ≈ 0.5 m if 0 < h < 1 m, while ho ≈ 3 m if 1 m < h < 5 m, these ranges 
being associated with different r values. 
 Our new solution equation (29) described herein does not suffer from this restric-
tion, because any initial condition can be enforced through the collocation procedure, 
even a transient flow from an arbitrary recharge history. [The two solutions agree 
(ρ = 0) when r*= 0 and h(x, t = 0) = 0 (dry soil layer initially), provided ho is the same.] 
A constant ho makes the steady-state profiles similar, with the recharge as scaling 
factor; however, this behaviour conflicts with the closer approximation of a recharge-
dependent ho. For example, Fig. 6 shows that the non-dimensional locus of the profile 
maximum varies with the recharge R and that the profiles are not simply R-scalable.  
 Pauwels et al. (2002) solve equation (5) of this paper, with r/K = 0, for a steady 
flow initial condition, with a constant non-zero outflow depth; they elaborate that 
solution further to model baseflow. The basic solution equation (8) of Pauwels et al. 
(2002) differs from equation (28) of Verhoest & Troch (2000) only in the first 
exponential term, which reflects the constant outflow depth. It is again the constancy 
of ho that allows the elegance of equations (25)–(30) of Pauwels et al. The use of  
ho = const., regardless of recharge rate, is understandable from the computational 
perspective, for, if the linearization level were allowed to vary with r, the double-series 
in equation (28) of Pauwels et al. would have to be recalculated at each time step, 
greatly burdening the computation. 
 Basha & Maalouf (2005) and Koussis et al. (1998) have shown that the LAD 
model approximates experimental data well; it is thus argued that it is useful for  
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Fig. 6 Non-dimensional depth profiles at steady state. 
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Fig. 7 Transient and quasi-steady-state outflow hydrographs q(L,t) for a monthly 
recharge series: (a) recharge r(t) (──) and reference rate r*(t) (——) for the optimal 
quasi-steady outflow; (b) exact transient flow for ho(r) (──) and quasi-steady-state 
flow, with ho from rmean = 1.533 mm h-1 (——), r = 1mm h-1 (×××) and r = 2mm h-1  
(° ° °). 

 
 
applications, which Pauwels et al. (2002) show in the calculation of baseflow with 
their LAD-solution. The algorithm builds on the principle of superposition applied to a 
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recharge pulse of duration τ: in the build-up phase T ≤ τ, the outflow is calculated by 
equation (33), and in the draining phase T ≥ τ, by the difference Q(1,T) – Q(1,T – τ). 
For a series of recharge pulses, the flow is given by the sum of the responses to the 
discrete pulses (recharge-drainage cycles). The transient solution and the QS solution 
of Verhoest & Troch (2000) are compared below for a monthly recharge series.  
 The parameters of the soil layer are K = 2.1⋅ 10-5 m s-1 (~1.8 m day-1), n = 0.25,  
ϕ = 15° (S ≈ 0.259) and L = 100 m. The recharge ranges from 1 to 5 mm h-1, or 0.2 ≤ R 
≤ 1.1, so the depths of linearization vary widely, 1.26 m ≤ ho ≤ 5.90 m [0.5ηo(R) of 
equation (36)]. The QS method uses the same ho throughout. The daily outflows are 
computed in the transient solution equation (33) with 25 terms and in the QS solution 
(equation (29) of Verhoest & Troch, 2000) with up to 250 terms (depending on 
temporal detail). Outflow starts at zero, following an extended dry period. The recharge, 
the outflow hydrographs and the r* values of the QS solution are shown in Fig. 7. It is 
evident that the smoother QS solution cannot track recharge changes as well as the 
transient solution (which approximates nonlinearity via ho(r)). In the present example, 
q(L, t) and r* vary markedly, in stark contrast to their near-constancy in the application 
example of Verhoest & Troch (2000) (r* ≈ 3 mm h-1 and 0.291 m2 h-1 ≤ q(L,t) ≤  
0.304 m2 h-1).  
 The QS solution with ho(rmean = 46 mm/30 days = 1.533 mm h-1) =  1.94 m (R ≈ 
0.3) is closest to the transient solution: mean-normalized RMS error, RMSE = 15% and 
max. error = –20%. Figure 7 shows also the QS solutions for ho(r = 1 mm h-1) (RMSE = 
15%, max. error = –28%) and ho(r = 2 mm h-1) (RMSE = 19%, max. error = 31%). Not 
shown is the very inferior QS solution (RMSE = 40%) with ho(r) as in the transient 
solution. The transient and best QS profiles at t = 30 days are shown in Fig. 8. Impor-
tantly, the QS solution fails to conserve mass: over the month, the difference between 
total recharge and total outflow does not equal the change of water volume in the soil. 
In this example, the discrepancy is only ~2% for the best QS solution, but the error rises 
for a non-optimal linearization, e.g. to –6.5% and 7% for ho(r = 1 mm h-1) and ho(r =  
2 mm h-1), respectively. The sensitivity of results to the ho value is of concern, because 
the optimal ho is unknown a priori (it depends also on future recharges). 
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Fig. 8 Transient and optimal quasi-steady depth profiles, at t = 30 days. 
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SUMMARY AND CONCLUSIONS  
 
Planar subsurface hillslope flow has been studied on the basis of the linearized 
extended 1-D Boussinesq equation (Dupuit-Forchheimer approximation; LAD model). 
The present LAD model includes the recharge components normal and parallel to the 
inclined bed; the latter is often ignored, yet this simplification is justified only if  
r/K << 1. A closed-form solution has been postulated as the sum of the steady-state 
and the transient (series) solutions, the latter in a separation-of-variables form. The 
parameters of the transient series depend on the dimensionless linearization depth ηo 
(R) = ho(R) cosϕ/Lσ, R = r/Kσ 2 and are calculated by iteration. The coefficients of the 
series are determined by collocating the general solution function with an arbitrary 
initial condition at a limited number of points, which also limits the number of series 
terms and makes the solution efficient.  
 The non-dimensional linearization parameter ηo(R) emerges as central in the soil 
layer’s response. The series converge rapidly for large ηo (diffusive flow) and slowly 
as ηo → 0 (KW). Also, ηo(R), not the slope, properly characterizes the flow as 
kinematic or diffusive; R = 0.2 is an approximate kinematic-diffusive limit. As a 
consequence of the ηo(R) dependence, the flow in a soil layer can be more or less kine-
matic or diffusive according to the recharge, while ηo cannot be a constant aquifer 
schematization parameter.  
 The new analytical solution can be used to study subsurface stormflow/baseflow in 
watershed modelling, as well as leachate flow towards lateral collection drains in 
landfills and may also serve as benchmarking standard of approximate solutions. Here, 
it has been used to test the QS state method of Verhoest & Troch (2000). First, it was 
reasoned that the QS approximation holds, if the computing time step exceeds the 
system-dependent transition time between flow states. The validity of this argument 
has been illustrated in an example, with common soil parameter values, in which the 
QS depth profile approaches steady state for Δt ≈ 20 days >> 1 day, failing to 
approximate earlier transient states adequately. 
 Transient and QS daily outflows were simulated in an example with a 30-day 
recharge series. The comparison made evident that the QS solution (RMSE = 15%, 
max. error = –20%) cannot track recharge changes as well. Importantly, the QS 
solution fails to conserve mass. The error is ~2% for the optimal ho, but rises rapidly 
for other ho values; the sensitivity to the ho value is of concern because the optimal ho 
is unknowable beforehand.  
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